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INTRODUCTION

In a complex and ever-changing world, how do humans reason as intelligently as they do—
especially given limited energy, data, and time? This question is essential to understanding the
underlying principles of almost all domains of cognitive science. Theories developed at the
computational level of Marr’s taxonomy (Marr, 1982) formalize the information processing task
required of various cognitive facilities and posit a ‘rational solution” to these tasks (Anderson,
1990). Bayesian models provide such a rational solution for how to reason in situations of
uncertainty, in particular when information needs to be integrated across different sources.
However, computing these responses via exact Bayesian inference is at best expensive, and at
worst intractable. Yet empirical findings show that human behavior is often consistent with
these rational responses (Griffiths and Tenenbaum, 2006). How might we be computing these
difficult inferences, especially within our neural and cognitive limitations? One possibility
is that a very efficient and accurate inference engine underlies human cognition. However,
in several notable cases, humans display 'cognitive biases’'—where their judgments deviate
systematically from exact Bayesian inference. These have been the object of extensive study
across psychology (Edwards, 1968) and behavioral economics (Tversky and Kahneman, 1974). If,
in fact, humans possess an efficient and accurate inference engine, why do they also consistently
make these predictable and seemingly irrational errors?

My thesis proposes a unified approach that reconciles these contradictions. The key insight
I build upon is that humans are not general purpose computers: we are instead ‘ecologically ra-
tional’, adapting to structure in our environments to make the best use of limited computational
resources. I propose models that make explicit claims about how such ecological rationality can
be implemented at the level of computational processes, via ‘amortization”: the adaptive reuse
of previous computations. However, amortization can lead to errors when the current query is
not representative of past experience. I demonstrate that these errors can explain a vast range
of historically observed human cognitive biases, as well as make novel behavioral predictions.

The intractability of exact Bayesian inference also causes it to remain impractical as an
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approach to engineering artificial forms of intelligent behavior. Most modern approaches
instead utilize more heuristic forms of inference, predominantly neural-network-based function
approximation, that are often very different from the provably rational Bayesian approach. This
has led to a great deal of consternation regarding the interpretability and predictability of these
systems—if they aren’t doing the provably rational thing, what exactly are they doing? How
can we regulate them? In the second part of my thesis, I examine the role of the environment in
these modern machine learning systems. I show how this lens provides new insights into the
underlying rules these systems implement, and further, how dependence on the environment
can be leveraged to artificially engineer new kinds of intelligent behaviors, such as causal
reasoning and compositional language representation.

The central contribution of this thesis is to highlight and formalize the importance of the
environment in shaping intelligent behavior. While this concept has been studied (Brunswik,
1943; Simon, 1956; Anderson, 1990; Gigerenzer and Todd, 1999), the primary focus of cognitive
science has remained the internal frameworks, mechanisms, and representations within the
human mind. In the words of Egon Brunswik, “Psychology has forgotten that it is a science of
organism-environment relationships, and has become a science of the organism”. In this thesis,
I propose models that approximate exact Bayesian inference by adapting to the structure of their
environments via amortization. These jointly explain both the remarkable successes of human
reasoning (i.e. in making intelligent inferences with limited resources), as well as its seeming
failures (i.e. in making predictable judgment errors). I also demonstrate how this principle
provides new avenues towards understanding our current artificially intelligent systems, as
well as towards building new systems with human-like intelligence.

CHAPTER 2: Approaches to human probability judgment

Chapter 2 provides an overview of previous approaches to probabilistic reasoning in humans.
I discuss the ‘rational analysis” approach—Bayesian models of cognition—as well as their
shortcomings (discussed briefly above). I then discuss bounded rationality—the idea that
computing exact normative responses might be outside the scope of the computational resources
and psychological mechanisms available at our disposal. I review two main approaches to this:
first, rejecting the principle of rational analysis in favor of finding simple but effective heuristics,
and second, incorporating constraints into the optimization process. However, computing the
boundedly rational response can often be more computationally expensive than the rational
solution, raising concerns about their plausibility. I then introduce the framework of ‘ecological
rationality” and, how its algorithmic realizations (using frameworks developed in chapters 3 &
4) provide a promising way forward.

CHAPTERS 3 — 4: Amortization and approximate inference

These chapters lay out the technical background used throughout this thesis. Chapter 3 discusses
the computational challenges underlying exact Bayesian inference, and reviews ways to instead
approximate it. Two approaches are discussed—Monte Carlo and variational approximations—
along with specific algorithms that implement them. I discuss the challenges of these approaches,
their complementary advantages, and ways to combine them. I also discuss the history of
their development, their neural plausibility, and previous applications in cognitive science.



Ishita Dasgupta Algorithmic approaches to ecological rationality

Subsequent chapters (5 —7) present behavioral evidence of both kinds of approximations in
human probability judgment and posit that a hybrid model underlies human inference.

Chapter 3 introduces amortization—the adaptive reuse of previous computations—and how
this can mitigate computational costs, and give rise to ecologically rationality. Amortization can
take various forms within the approximate inference frameworks discussed above. Subsequent
chapters (6 & 7) present behavioral evidence of these different forms. I also discuss how modern
machine learning (in particular, discriminative methods that encompass the vast majority of
modern neural network models) implicitly incorporate amortization, laying the groundwork
for later chapters (8 & 9). Finally, I discuss how amortization has historically been implicit in
many cognitive theories of probabilistic judgment and reinforcement learning.

CHAPTERS 5 — 7: Ecological rationality in humans

These chapters build and test ecologically rational models of human probabilistic inference,
based largely on amortization within approximate inference algorithms. These models parsi-
moniously replicate a series of historical findings of cognitive biases that often go in opposite
directions, and can also explain the context-sensitivity in both the extent and kinds of errors
seen, resolving decades of controversy across the behavioral sciences about the rationality of
human probability judgment. Further, they make very limited demands on computational
resources—the mechanisms implemented are simple and local, and therefore plausible with
human cognitive limitations.

CHAPTER 5: Correlated sampling replicates framing effects

The material in this chapter was previously published in Dasgupta et al. (2017a).

Historical findings show that the self-generation of hypotheses in the service of performing
probabilistic inference over a large space of such hypotheses produces systematic deviations
from rational inference. We consider the example of the ‘subadditivity” effect (Fox and Tversky,
1998). If people are told they are in a room with a table in it, they give higher responses to
the “typically unpacked” query: “What is the probability that there is also a chair, a curtain, a
computer or any other object starting with the letter C in the room?”, than to the ‘packed query’:
“What is the probability that there is also any object starting with the letter C in the room?”. More
formally, the perceived probability of a hypothesis is higher when the hypothesis is framed as a
disjunction of typical component hypotheses. On the other hand, if the disjunction is instead
‘atypical’ (e.g. "a canoe, a cow, a canon, or any other object starting with the letter C"), people
give lower responses, in an effect called ‘superadditivity” (Sloman et al., 2004). How can we
explain these biases, and their dependence on question framing?

The number of objects that could occur in a room with a table is very large. Exact posterior
inference requires enumerating all of these. With limitations on cognitive resources, we assume
that people cannot do this exactly, and posit instead that hypotheses are generated stochastically
such that the sampled hypotheses form a Markov chain Monte Carlo (MCMC) approximation of
the true posterior. The chain is initialized at query-specific information from the framing of the
question. Given resource limitations, we assume that people take a small number of samples.
While MCMC converges to the true posterior in the limit of infinite samples, in a small sample
regime, initialization will strongly influence how many other hypotheses are generated, as well
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Figure 1: Demonstration of MCMC model. MCMC sampling leads to sub- and super-additivity for
different framings of : “In the presence of a table, what is the probability that there is also another object
starting with C?”. (a) The chain initialized with a typical unpacking starts at ‘chair’, a high probability
hypothesis (darker shading) while the chain initialized with an atypical unpacking starts at ‘canoe’, a
low probability hypothesis (lighter shading). (b) The same (random) proposal of ‘toothbrush’ is made.
(c) Since the probability of ‘toothbrush’ is higher than ‘canoe’ the proposal is accepted by the atypically
unpacked chain, but since it is lower than ‘chair’, is rejected by the typically unpacked chain. (d) Typically
unpacked chains tarry in the high probability regions of the queried object set, giving subadditivity,
whereas the atypically unpacked chain gets derailed into other regions, giving super-additivity.

as which hypotheses are generated. This results in very different sets of samples depending on
the question framing, and therefore to different biases in the approximate posterior. An outline
of this mechanism is presented in Figure 1. With 7 simulation studies, I show that this model
replicates a host of historically observed framing effects, including subadditivity (Fox and
Tversky, 1998), superadditivity (Sloman et al., 2004), the weak evidence effect (Fernbach et al.,
2011), the dud alternative effect (Windschitl and Chambers, 2004), the self-generation effect
(Koriat et al., 1980), the crowd within (Vul and Pashler, 2008) and the anchoring effect (Tversky
and Kahneman, 1974; Lieder et al., 2013). The same model also explains why these effects do not
manifest in small hypothesis spaces: with the same number of samples in a smaller space, the
Markov chain will converge to the true posterior. This chapter also presents 4 new behavioral
experiments to confirm the model’s prediction that superadditivity and subadditivity can be
induced within the same paradigm by manipulating the framing of the query. The model
predicts higher biases under cognitive load or time pressure, since these reduce the amount of
computation possible, which manifests in our model as a reduced number of samples. These
predictions are partially confirmed with novel experiments.

Key features of this model—limited number of samples, and initialization dictated by
question framing—can be seen as a rational use of limited resources (Gershman et al., 2015;
Lieder and Griffiths, 2019). While taking more samples leads to more accurate probability
estimates, the marginal improvement with additional samples reduces with the number already
taken. If taking each sample incurs some fixed cost, at some point, a new sample is no longer
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worth that cost. Limiting the number of samples taken is therefore computationally rational.
Further, the initialization of the model can be seen as ecologically rational. Cues are usually
correlated with the relevant hypotheses in the environment (Goldstein and Gigerenzer, 2002).
Initializing at these cues (as opposed to randomly) leads on average to faster convergence of
the chain, and more accurate probability estimates with the same number of samples—thereby
making use of structure in the environment to optimally use limited resources. While this
initialization leads to predictable biases in this particular situation, it is likely beneficial on
average. An adaptive initialization like this could be amortized, i.e. learned across previous
experience. Chapter 7 addresses this possibility more directly.

CHAPTER 6: Humans reuse samples from recent related queries

The material in this chapter was previously published in Dasgupta et al. (2017b) and Dasgupta et al.
(2018b).

This chapter explores the implications of amortization in sampling-based inference. For
example, the framework in Chapter 5 can answer any of the following questions:

1. What is the probability of a microwave in a room given that I've observed a sink?
2. What is the probability of a toaster given that I've observed a sink and a microwave?
3. What is the probability of a toaster and a microwave given that I've observed a sink?

For each of these queries, a new sample-based posterior approximation is formed—the
inference engine is memoryless. However, queries are usually not independent. In the example
above, the answer to question 3 can be directly obtained from the answers to questions 1 and
2: P (toaster N microwave | sink) = P (toaster | sink, microwave) x P (microwave | sink).
Ecological rationality—the utilization of environmental structure to make the best use of limited
resources—therefore dictates that we should not neglect all previously computed responses.

This chapter demonstrates (with 3 new experiments) that when sequentially answering
two related queries about natural scenes, responses to the second query systematically depend
on the structure of the first query, consistent with the adaptive reuse of past computations.
New simulations show that different kinds of reuse make divergent behavioral predictions as
modulated by a cognitive load manipulation. New experiment test these, showing evidence
that people amortize summary statistics of previous inferences, rather than storing the entire
distribution. These findings support the view that the brain trades off accuracy and compu-
tational cost, utilizing structure in sequences of queries to make efficient use of its limited
cognitive resources.

CHAPTER 7: Amortized inference strategies give rise to contextual heuristics

The material in this chapter was previously published in Dasgupta et al. (20190).

The sampling-based accounts discussed so far cannot account for a crucial characteristic of
many biases observed in human inference: depending on the domain, they sometimes go in
opposite directions. While some studies suggest that people underreact to prior probabilities
(base rate neglect), other studies find that people underreact to the likelihood of the data
(conservatism). While these have separately been modeled as different heuristics, it is unclear
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Figure 2: Schematics of inference methods. (a) Memoryless inference optimizes the parameters ¢ of
the posterior distribution Qy for each query d. (b) Amortized inference shares parameters across queries,
optimizing them such that Qy is a good approximation in expectation over the query distribution.

(a) Memoryless inference (b) Amortized inference

how these heuristics are learned. Further, the problem of strategy selection remains—it is
unclear why and how one heuristic is chosen in certain domains, while a different one is applied
in others.

Chapter 7 develops a theory for how heuristic strategies can emerge from the amortization of
previous inferences. Amortization is represented schematically in Figure 2. The framework used
here is implemented with a recognition model that maps queries d to probability distributions
(parameterized by ¢ and defined over the space of hypotheses #).! This function is learned
from previously computed solutions, thereby ‘re-using’ them. Beyond the direct reuse of old
inferences discussed in Chapter 6, learning such a regression function (from d to ¢) allows
us to partially reuse computations for queries not identical, but ‘similar’ to previous ones.
The amortized recognition model provides good posterior estimates in expectation over the
distribution of queries. This fosters dependence on the underlying statistical structure in the
distribution of queries encountered—frequent queries will be better represented than infrequent
ones. If the distribution of queries varies across domains, then different domain-specific
heuristic strategies (like base rate neglect or conservatism) emerge. Which heuristic arises in
which domain depends on how well it captures the structure of the query distribution in that
domain—i.e. on how ecologically rational it is.

This chapter shows (with 9 new simulations) that the predictions from an amortized recog-
nition model can reconcile decades of contradicting findings on context-dependent reactions to
prior and likelihood (Benjamin, 2018). It can also replicate effects of sample size (Griffin and
Tversky, 1992) and experimental design (Koehler, 1996) on these reactions. Further, it tests new
predictions from this model by eliciting different reactions to prior and likelihood in the same
domain, simply by manipulating the historical query distribution—with a novel experiment
as well as a reanalysis of data from Gershman (2015). This framework also explains several
related effects including belief bias (Cohen et al., 2017) and similarity weighted reuse (Dasgupta
et al., 2018b). Finally, this chapter frames amortization as a regularizer for other noisy inference
algorithms (see Zhu et al., 2018, for a similar argument). This framing permits integration
of amortized inference strategies (based on variational inference) with the sampling-based
algorithms discussed in Chapters 5 and 6 (as the point of initialization of a Markov chain, or as

!We actually learn a variational approximation to the true posterior since this can be learned without knowing
the true posterior and instead only knowing the joint distribution.
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a proposal distribution), providing new unified models for human probabilistic inference.

CHAPTERS 8 — 9: Ecological rationality in machines

Recent years have seen vast improvement in the capabilities of artificial intelligence systems,
driven primarily by developments in deep neural networks (LeCun et al., 2015). However, the
lack of structure in the representations and decision criteria these systems learn continues to
engender skepticism about their interpretability (Doshi-Velez and Kim, 2017), and their promise
as a general approach to artificial intelligence (Marcus, 2018; Lake et al., 2018). These two
chapters show how ecological rationality provides a new lens for understanding and improving
machine learning. These systems implicitly amortize computations, and in doing so have a
strong dependence on (potentially spurious) statistical structure in the query distribution. A
closer analysis of their learning environments therefore provides insights into their internal
representations. In addition, we can manipulate learning environments to engineer new forms
of intelligence, like compositional representations and causal reasoning. This also provides
insights into the analogous capabilities in humans.

CHAPTER 8: Compositionality in sentence representations

The material in this chapter was previously published in Dasgupta et al. (2018a) and Dasgupta et al.
(2019a).

Language exemplifies a hallmark of human intelligence: the ability, in the words of von
Humboldt, to “make infinite use of finite means.” This ability has been formalized as system-
aticity (Fodor and Pylyshyn, 1988; Lake et al., 2019): an algebraic capacity to produce new
combinations from known components, generalizing knowledge from one context to others.
This chapter examines if artificial language representations are similarly systematic. With initial
results indicating lack of systematicity, it then explores whether systematicity can be learned in
these systems by making augmentations to the training environment, i.e. by making certain
forms of systematicity more ecologically rational. Finally, this chapter studies properties of the
representations learned with these augmentations, discovering new similarities and differences
with human representations of language.

This chapter focuses on sentence representations learned by a machine-learned system for
natural language processing (Conneau et al., 2017). By building and analyzing performance
on a new diagnostic test dataset, we see that the learned representations are not systematic.
Rather, they employ simpler heuristics. Analyses of the training distribution reveals that, due
to spurious structural regularities in how the data was generated, these simple heuristics are
in fact ‘ecologically rational’. Using this approach—of studying the learning environment to
gain insight into the representations learned by machine learning systems—I demonstrate new
paths towards improved interpretability.

Given that we have control over the learning environment of these systems, we can augment
them to alter which heuristics are ecologically rational, analogous to generating adversarial
examples (Goodfellow et al., 2014). This chapter shows that if the ecological validity of the
discovered heuristics is reduced, the system does learn a more systematic and compositional
representation of sentences. Further analyses of these representations reveal parallels to the
analogous representations in people. While these systems can learn abstract, systematic rules
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Figure 3: Two loops of learning in meta-learning. The circular arrows represents our learning system,
a Recurrent Neural Network (RNN). The directed graph represents the structure of a task. The inner
loop of learning (executed by the RNN) optimizes performance in this particular task. The outer loop
trains the weights of the network (over related tasks) to implement this inner loop procedure.

and generalize them to new contexts under certain circumstances (similar to human zero-
shot reasoning), this generalization has some shortcomings. Notably, these shortcomings are
similar to deviations from normativity found in humans (for example belief bias, as studied
in Chapter 7). These parallels suggests new ways to understand psychological phenomena
in humans. The new metrics presented here (for testing and characterizing the systematicity
of language representations) provide inroads toward a clearer picture of what ‘human-like’
language understanding is, and provide concrete milestones on a path to artificially replicating
it.

CHAPTER 9: Learning causal inference from the environment

The material in this chapter was previously published in Dasgupta et al. (2019¢c).

Traditional approaches to building artificial intelligence focus primarily on engineering
new models and architectures that can make more efficient use of computational resources
to learn complex concepts and behaviors, on fairly standardized datasets. By considering
the role of the environment in shaping inference, we open up a new set of ways to engineer
artificially intelligent systems by directly manipulating their training environment. This chapter
demonstrates how a simple neural network architecture (trained with trial and error learning
from reinforcement) can exhibit causal reasoning and active information seeking behaviors, if
we engineer its training distribution.

These experiments are carried out under the meta-learning, or ‘learning to learn” framework
(Schmidhuber, 1987; Thrun and Pratt, 2012). Here, rather than learning to perform a single task,
systems encounter a series of related tasks. Over this experience, they learn commonalities
across these related tasks that allow them not only to become better at solving each task at
hand, but also to solve previously unobserved tasks from the same distribution with little new
experience. A schematic of this framework is presented in Figure 3. Controlling the distribution
of tasks the agent encounters therefore provides a way to indirectly control the learning and
inference procedures the system encodes.
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The absence of causal sensibilities in modern machine learning has been a long standing
criticism (Pearl, 1988, 2000). I show that meta-learning agents trained this way can learn
strategies that effectively probe, uncover, and leverage the specific kinds of causal structure
in their environment to perform causal reasoning in related held-out tasks. They can also
select informative interventions, draw causal inferences from observational data, and make
counterfactual predictions. This work lays the foundation for causally directed, structured
exploration in artificial intelligence, using agents that can perform and causally interpret
experiments in their environments, much like human active learning (Nelson, 2005; Montessori
and Holmes, 1912). It also suggests exciting new theories for how causal reasoning emerges in
humans.

CONCLUSION

Herb Simon (1955) put forth the challenge facing more realistic theories of intelligence: “Broadly
stated, the task is to replace the global rationality of economic man with a kind of rational
behavior that is compatible with the access to information and the computational capacities
that are actually possessed by organisms, including man, in the kinds of environments in which
such organisms exist." This thesis takes steps toward exactly that. By taking into account the
circumstances under which intelligent behavior manifests, this thesis provides and furthers
several new insights. It first presents ecologically rational computational models of human
probabilistic inference that leverage environmental structure (via flexible reuse of previous
computations) to reduce computational costs. These can therefore explain how we solve very
difficult problems with such stark limitations on time, data, and energy. This very adaptation
comes at a cost: by adapting to the ecological distribution of queries, we become better at
computing good approximate solutions to frequent queries, but worse at answering infrequent
ones. This explains a plethora of cognitive biases and deviations from normativity in human
probabilistic inference. My models adapt to statistical structure via amortization of inference
within structured probabilistic models, providing a path to reconciliation between the his-
torically incompatible statistical and structured approaches to cognition, incorporating their
complementary advantages. Further, the lens of ecological rationality provides new insights
and inroads into artificial intelligence. This thesis shows that analysis and control of training
datasets for machine learning helps us understand black-box systems, providing solutions to
the interpretability crisis in modern machine learning. I also demonstrate the emergence of
new kinds of intelligent behavior, like causal learning and compositional representations, via
manipulation of the training environment. These novel approaches to eliciting such complex
behaviors also suggest new theories for how humans acquire and implement them. By building
computational theories for the interaction between intelligent systems and their environments,
i.e. by developing algorithmic approaches to ecological rationality, this thesis jointly furthers the
closely intertwined goals of understanding human intelligence, and building artificial systems
that emulate it.
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