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ABSTRACT

In a complex and ever-changing world, how do humans reason as intelligently as they do—especially
given limited energy, data, and time? How can understanding this guide us toward building better artifi-
cially intelligent systems? Bayesian models provide a normative account of rational behavior. Although
computing rational responses via exact Bayesian inference is expensive, empirical findings show that hu-
man behavior is often consistent with these rational responses. This seems to indicate that an efficient and
accurate inference engine underlies human cognition. However, in several notable cases, humans display
‘cognitive biases’, where their judgments deviate systematically from exact Bayesian inference. How can we
reconcile these contradicting findings? This thesis provides a reconciliation by building on the insight that
humans are not general purpose computers: we are instead ‘ecologically rational’, adapting to structure in
our environments to make the best use of limited computational resources. I first discuss algorithms for
approximating exact Bayesian inference within limited computational resources. These reduce the costs
of inference by leveraging underlying environmental structure through ‘amortization’: the adaptive re-use
of previous computations. However, amortization can lead to errors when the current query is not repre-
sentative of past experience. I demonstrate that these errors replicate several human cognitive biases, and
test new predictions with behavioral experiments. Finally, I show that amortization also gives rise to eco-
logically rational behaviors in machine learning, and demonstrate how this can be leveraged to artificially
engineer new kinds of intelligent behaviors, like causal reasoning and compositional language representa-
tion. This also provides new insights into how these central tenets of intelligence manifest in humans. By
taking an algorithmic approach to ecological rationality—that is, by making explicit claims about how it
can be implemented at the level of computational processes—this thesis develops new models for human
probabilistic inference that can explain both its remarkable successes as well as its seeming failures, and also

suggests new avenues toward machines with human-like intelligence.
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Introduction

Understanding the flexibility and efficiency of human intelligence, as well as how to incorporate it in ar-
tificial systems, has been a long-standing open problem. A promising and successful approach has been
to build structured probabilistic models of cognition*. These have been very successful as a theory of
human-like intelligence for two key reasons. First, by being ‘structured’ they allow for primitives of hu-
man symbolic thought — like rules, grammar, and logic — that allow humans to generalize far beyond our
direct experience.m’62 A classic example is of mathematical knowledge, for example, once we know the
rules of addition, we can add two numbers we may never have added or even seen before. For a more ev-
eryday example, we know that if “Jane is taller than Gloria”, this implies that “Gloria is shorter than Jane”,
since that is a logical deduction — even if we may never have met Jane or Gloria, or know anything about

their actual heights. These abilities require abstract, logical, structured representations. However, such

“In Chapter 2, I discuss in greater detail specifically Bayesian probabilistic models, which are a subset of proba-
bilistic models in general. Structured probabilistic models are also a type of generative model since they make explicit
claims about how the observed data is generated.



representations cannot explain another crucial aspect of human intelligence, namely graded, uncertain in-
ferences.”” In many such cases, people do not have adequate information to make logical deductions, but
can make reasonable ‘guesses’ and are aware of their own uncertainty. Solely with access to discrete, logical
rules, it would be impossible to account for human beliefs like ‘most birds can fly’, or the human ability
to make sense of and learn from ambiguous signals. This brings us to the second key aspect of structured
probabilistic models — that they operate over probabilities, not Boolean truths. Structured probabilistic
models provide a broad, flexible framework with these key desirable properties, that abstracts away the
core of the problems that intelligent systems need to solve, and provides a normative solution. This per-

T to social

mits us to understand human cognition across a wide range of domains*7? from motor control
cognition”. They have also been adopted and used in artificial intelligence *%54:49%439,
However, these models face some crucial shortcomings as models of intelligent behavior. While struc-
tured probabilistic models provide a normative answer and a good theory of the abstract problem intelli-
gent systems are trying to solve, they provide no insight into how these systems might actually solve these
problems (i.e. make probabilistic inferences in structured models) at the level of algorithms or psychologi-
cal processes®”. This concern is exacerbated by two key issues. First, making exact probabilistic inferences
in these structured models is largely intractable. The very flexibility of these models, in being able to gen-
eralize far outside direct experience and account for uncertainty, can hinder finding a solution to a specific
given problem. The space of solutions these models can represent is so vast, that finding the right solution
for the problem at hand is like finding a needle in a haystack. I discuss this issue in greater detail in Chapter
3." Therefore, despite significant advances towards explaining behavior, they largely remain ‘as-if’ models
that describe what intelligent systems might be doing, but do not provide a complete picture of how cog-
nition works. These concerns have also hindered the adoption of these structured probabilistic models,
in mainstream machine intelligence. Second, much empirical evidence suggests that humans make several
systematic inferential errors, with their probabilistic estimates deviating consistently from the predictions

248

of exact probabilistic inference. Some of these include effects like base rate neglect*#*, where people tend to

“The intractability of exact inference is exactly analogous to the intractability of computing the partition func-
tion in statistical physics. Several approaches developed to address this problem in physics can be generalized to the
problem of approximate probabilistic inference. These are discussed in greater detail in Chapter 3.



ignore certain sources of information like prior probabilities, or the anchoring effect*7 where putatively
unrelated sources of information influence future inferences, among many others. Wikipedia lists over
a hundred such established cognitive biases. The fields of behavioral economics®* (which was arguably
formed around the documentation and analysis of such biases), as well as cognitive psychology **"* have
responded to these findings with the proposal that humans in fact do not perform probabilistic inference
atall, and instead employ heuristic strategies. These heuristic strategies usually sacrifice the guarantee of be-
ing optimal but are often sufficient for achieving immediate goals, and are computationally much cheaper
than computing optimal responses. In keeping with this, the hugely successful deep-learning approach

to machine intelligence is largely based on heuristic pattern-matching*%>%"

, rather than normative proba-
bilistic inference in structured models.
Heuristic solutions however do not have the explanatory power of structured probabilistic models: they

also do not generalize well, and tend to be very domain-specific. Can we address the shortcomings of

structured probabilistic models, to allow them to be more complete models of human intelligence?

CONSIDERING THE ENVIRONMENT IN HUMAN INTELLIGENCE

This thesis addresses these two key criticisms of structured probabilistic models by providing a) a more
computationally tractable solution to inference and b) an explanation for deviations from exact inference.
This is done by taking a renewed look at the environments in which humans operate. The importance
of the environment in shaping intelligent behavior, and thereby the importance of considering it when
trying to understand intelligence, has been around in psychology as far back as 1943 with the work of
Brunswik™, and has since been periodically reinstated by the works of Simon 48 and Gigerenzer161 among
others. These works posit that a better lens to look at human cognition is not of pure rationality or nor-
mativity, but rather through the lens of ‘ecological rationality’ — where the mind makes best use of limited
cognitive resources, by leveraging underlying structure in the environment. However, most mainstream
psychology focuses primarily on the internal frameworks, mechanisms, and representations within the hu-
man mind, largely neglecting the structure of the environment and how it might strongly impact these.

In the words of Egon Brunswik, “Psychology has forgotten that it is a science of organism-environment



relationships, and has become a science of the organism”.

This thesis posits new models of human probabilistic inference that leverage environmental structure
flexibly to ease the computational burden of exact inference in structured probabilistic models. This adap-
tation to the environment is made possible by considering the role of memory as a computational resource,
and re-using previous computations. If there is underlying structure in the distribution of queries posited
by an environment, it can be picked up and used by a system that tries to efficiently re-use the compu-
tations done in response to these queries. This process is called amortization, and is discussed in further
detail in Chapter 4. The resulting computational savings lead to more psychologically realistic demands
of human cognition, thereby rendering approximate probabilistic inferences in structured models less in-
tractable and more plausible. But there is no free lunch; these computational savings come at a cost. While
they might ease some inferences, they do so by making smart approximations. This can make certain kinds
of errors more likely. A system that utilizes implicit underlying structure in the distribution of queries will
make mistakes when this structure is violated. I show that the errors made by such models exactly mirror
the patterns of cognitive biases observed (historically as well as in a series of new experiments) in humans.
This program of research therefore jointly addresses both of the key concerns with structured probabilistic

models of human cognition outlined above.

CONSIDERING THE ENVIRONMENT IN MACHINE INTELLIGENCE

While much recent work has demonstrated the advantages of structured probabilistic models in building
better artificial intelligent systems*%#+49%439 the difficulty of inference remains a major impediment in
their wide-spread adoption. Engineering solutions to easing this inference have included the re-use of past
computations i.e. amortization, in the form of a recognition model*>*#' or, in the age of deep-learning,
an inference network %3534 Tn fact, even in the absence of any explicit probabilistic generative model,
many machine learning methods that simply do discriminative” classification or ‘pattern matching’, can

be interpreted as amortized inference in an implicit model.

“Discriminative models directly model conditional distributions, i.e. posterior distributions, as opposed to gen-
erative models that model the full data generating process, i.e. the joint distribution. A more detailed discussion of
this distinction is made in Chapter 4 in the section on amortization in machine learning.



As discussed briefly earlier (and in greater detail in Chapter 4), amortization leads to adaptation to the
environmental distribution of queries. Most modern machine-learning methods implicitly invoke some
form of amortized inference, and are thereby strongly influenced by statistical structure in their training
environments. More explicitly addressing the role of the environment in shaping the inference procedures
learned by these systems can have great value — both for better understanding current systems, as well as
building better ones. However, as in cognitive science and psychology, machine learning methods have
historically largely neglected the role of the system’s learning or training environment. Progress is usually
gauged by how new models and mechanisms perform on unchanging, often arbitrarily selected, standard-
ized data sets. Yetitis often unclear — without a better understanding of these data sets — what exactly good
performance on them really means. Notonly is the role of the training environment in shaping learned pro-
cedures poorly understood, it is as a result also underutilized. We have complete control over the training
environments our artificial systems receive. Engineering these environments — rather than only engineer-
ing the inner mechanisms — is an important and promising approach (with complementary advantages to
the engineering of inner mechanisms) towards building systems that exhibit intelligent behavior.

The second part of this thesis discusses and demonstrates how analysis and manipulation of learning
environments can provide insight into how to artificially develop central tenets of human intelligence like
causal inference and language. These insights also provide new ways to study how humans acquire and

implement these complex behaviors.

OUTLINE

The key insight that I build on in this thesis is that humans are not general purpose computers — and
neither should artificial systems that hope to emulate human intelligence. Humans and and human-like
machines have to work with limited computational power, and have to interact only with specific kinds
of environments. While normative approaches like structured probabilistic models give us deep insights
into the domain-general ‘what and why’ of intelligent behavior, it leaves open the crucial question of ‘how’
intelligent behavior can realistically manifest in ecologically relevant domains, within limits on time, data

and energy. I argue that algorithmic realizations of ecological rationality — where intelligent systems make



the best use of limited resources by leveraging underlying structure in the environment — within the frame-
work of structured probabilistic models, provides a promising way forward. Through a series of investiga-
tions into human and artificial intelligence, I demonstrate how this insight can lead us to better models of
human cognition, as well as better approaches to artificial intelligence.

In Chapter 2, I review the literature on human probabilistic inference. I first review normative accounts,
followed by a review of other approaches to human probabilistic inference. I highlight the contributions
and shortcomings of these approaches, and outline how this thesis suggests a more complete picture by
unifying their complementary advantages. In Chapters 3 and 4, I review some technical and conceptual
background. In Chapter 3 I cover technical background on approximate probabilistic inference. Several
of these methods have been developed in statistical physics, and I review how they can be generalized to ad-
dress the intractability of Bayesian inference. In Chapter 4 I introduce a formal notion of computational
re-use i.e. amortization and discuss how it can be used within algorithms for approximate inference. I
outline how the process of amortization can leverage underlying environmental structure to give ecologi-
cally rational behavior. Finally, I review how amortization has been an implicit part of several approaches
to machine learning as well as models of human cognition, and discuss the value of addressing it more
explicitly.

In Chapters s to 7, I discuss how these concepts can be used to build new models for human probabilistic
inference. Chapter 5 studies human inferences in large hypothesis spaces. This is a challenging problem,
where exact inference is intractable. I demonstrate that a sample-based approximation under ecologically
rational constraints, can replicate the specific kinds of biases observed in human inference in such large
hypothesis spaces. Further, in small hypothesis spaces, this model returns optimal responses. This allows
us to jointly explain both the rationality as well as various kinds of irrationality of human inference within
the same framework. Chapter 6 expands on the role of the environment in sample-based approximations. I
empirically demonstrate, as well as build models for, re-use of computation in consecutive related queries.
This kind of re-use — or amortization — is ecologically rational since queries in the real world are often
related, and the best use of limited resources is to re-use previously completed computations.

Chapter 7 studies the role of re-use and ecological rationality in greater detail. In particular, I dis-



cuss amortization in a variational framework, which is more amenable to flexible re-use than sampling.
I demonstrate how this framework can replicate several cognitive biases that involve context-sensitive non-
normative reactions to different sources of information, as well as various various other effects. This work
posits an algorithmicapproach, viaamortization of inference, to understanding ecologically rational heuris-
tic behavior. I also discuss how this approach can be combined with previously discussed sampling ap-
proaches. This unification results in a single model that can jointly account (with few assumptions, and
with mechanistic commitments that are within the realm of the psychologically plausible) for a wide range
of biased inferences — while still retaining the capacity for optimal inference in the limit of infinite experi-
ence in the environment, and/or infinite computational resources.

Chapters 8 and 9 shift gears to focus on the role of the environment in studying and improving mod-
ern artificial intelligence (AI). In Chapter 8, I consider a system for natural language processing, where
ecologically rational heuristic behavior can explain the errors this system makes — analogous to how they
explained human biases in Chapter 7. I outline an approach that uses this insight to better asses as well as
improve these systems. In Chapter 9, I demonstrate how we can leverage the strong influence of the envi-
ronment on the inference procedures learned, to engineer the inference procedures we want. I show that
manipulation of the environment of a very simple learning architecture, can give rise to complex behaviors
including causal inference procedures and active information seeking. The strong control we have over the
environments encountered by artificial systems also allows new investigations into ecological rationality,

and how it shapes human cognitive abilities.



Probabilistic inference in humans

Reasoning in the face of uncertainty is a hallmark of intelligent behavior. In this chapter, we study how
humans make such probabilistic inferences. I will first provide some background on Bayesian models of
cognition; these posit that humans are entirely rational in how they perform probabilistic inference. I will
discuss what they provide and where they fall short. I will then provide an overview of approaches that
have attempted to address these shortcomings by positing boundedly rational behavior. In particular, I
will summarize two major lines of work: the heuristics and biases literature, and the literature on com-
putational rationality. Finally, I will introduce a special case of bounded rational behavior viz. ecological
rationality. This proposes that human probabilistic inference leverages structure in its environment to

shape its inference procedures, and makes best use of bounded rationality.



2.1 BAYESIAN MODELS OF COGNITION

Bayesian models of cognition follow in the tradition of ‘rational analysis’ #°*°: an approach to cognitive sci-

ence that frames cognition as an approximately optimal response to the structure and uncertainty present
in natural tasks and environments. This framework specifies the goals of a system and the information
it has access to, and makes predictions about behavior by determining what would be optimal or norma-
tive under these assumptions. A central contribution of such models is that they go beyond describing
phenomena and mechanisms, and attempt to provide insight into why the processes might be as they are.
Since the normative response can be derived from the assumptions, these models make testable predic-
tions about behavior in new situations (that can be empirically generated and manipulated), and thereby
facilitate the scientific process of building, falsifying and improving theories.

Bayesian models posit that humans reason probabilistically, following the tenets of Bayes’ rule. Proba-

190,160 and is therefore

bility theory specifies how rational agents should reason in situations of uncertainty
an important part of rational models of cognition. The motivation for using specifically a Bayesian ap-
proach to probabilistic inference is that they provide an answer — at least in principle — of how humans go
beyond the data collected solely from their own experience of the world, integrate it with abstract prior in-
formation, and make intelligent inductive inferences. Many problems in our everyday life are vastly under-
specified by our sensory input. To take an example from Griffiths et al. 7%: deducing with certainty the the
color of an object is impossible simply by observing light reflected from it, since the input we receive is a
combination of the light illuminating the scene, and the spectrum reflected by the object. Bayesian models
posit that the reason we are nonetheless able to make intelligent guesses about the colors of objects around
us is that we have strong expectations about the spectrum of light that usually illuminates our surround-
ings. This takes the form of a priori knowledge gained from previous experience, that we can integrate
with the visual signal received — using Bayes’ rule — to make useful guesses about the problem at hand.
While such models have been successfully used to model behavior in several domains, two key concerns
remain. First, exactly applying Bayes’ rule is often intractable — particularly in flexible, structured models.

This is an established and extensively studied problem in statistics. **? I discuss the details of this problem

and potential solutions to it in Chapter 3. Second, significant empirical evidence suggests that humans



responses often deviate significantly from Bayes optimal in systematic and predictable ways. 454271758
Both of these raise concerns about whether or not humans are actually performing exact Bayesian inference,
and has led to much controversy, 3°*53°

In the next section I discuss some other approaches to modeling human inference that skirt these con-
cerns with exact Bayesian models of cognition. These approaches move away from the rational analysis
perspective and move closer to the psychological mechanisms underlying behavior™* - but do so in very

different ways.

2.2 BOUNDED RATIONALITY

An important path toward establishing a stronger connection between rational models of cognition and
psychological mechanisms is to recognize that humans are resource limited, and computing exact norma-
tive responses might be outside the scope of the psychological mechanisms available at their disposal. This
idea was formalized in Simon #7 as ‘bounded rationality’: the idea that the rationality — and therefore the
normativity — of individual actors is limited by the information they have, the limitations on their cogni-
tive resources, as well the finite amount of time they have to make decisions (see Russell * for a review).
Several different strategies for taking into account the effects of information-processing constraints have
been considered. Here I present two key ones; first, we consider rejecting the principle of rational analysis
in favor of finding simple but effective heuristics; and second, we consider incorporating constraints into

the optimization process.

2.2.1 HEURISTICS AND BIASES: SHORTCUTS AROUND NORMATIVE INFERENCE

If the goal is bounded rationality, we need not retain the principle of optimality from rational analysis.
Rather, we can posit heuristic mechanisms by which people arrive at responses, that might be far easier to
compute. Several of these might provide reasonably good responses most of the time — satisfying the claim
of being ‘boundedly’ rational — however their means of arriving at these responses might be largely discon-
nected to the process of explicitly computing the optimal response (via normative probabilistic inference,

as prescribed by rational analysis).
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Therefore, the argument is that while certain behaviors might look ‘as if’ people are engaging in norma-
tive Bayesian inference, they might be doing something completely different — viz. a heuristic strategy that
is much easier to implement. In cases where this heuristic contradicts normative Bayesian inference, we get
the systemic and predictable deviations from normativity as recorded in empirical studies. This approach
has been hugely influential in behavioral economics, — pioneered by Kahneman and Tversky +7 — as well
as in psychology (see Gigerenzer & Selten™? for a review).

A crucial shortcoming of these approaches however is that while they answer the ‘what’ of the processes
underlying human inference, by relinquishing the optimization perspective of rational analysis, they often
fail to account for the ‘why”", and the ‘how’. This can lead to lists of heuristics, conceived with inspiration
from the specific modes of failure noted in human inference, without a unifying theory of why and how
these heuristics are learned or where they come from.

Another problem is that of strategy selection™***" — how do we choose a heuristic for a specific context?
Most models of strategy selection assume that people are able to assess the usefulness of a strategy, through

223,18,270

cost-benefit analysis , reinforcement learning™>", or based on the strategy’s applicability in a par-

292400 _ which in and of itself might be a resource-intensive process outside the scope of

ticular domain
the posited limitations on cognitive resources. Further, all of these approaches require, either explicitly or
implicitly, a feedback signal. This requirement poses a problem in inferential settings where no feedback
is available. People can readily answer questions like “How likely is it that a newly invented machine could
transform a rose into a blackbird?” 77 which lack an objective answer even in principle.

Finally, while these heuristics have been studied primarily in the domain of judgment and decision mak-
ing, probabilistic inference in humans is important for a much wider set of domains — including concept
learning, causal attributions, and language learning. Many of the proposed heuristics are often specific to
the kinds of problems studied in explicit judgment and decision making, very often in the domain of lin-

ear regression across a series of attributes that influence a binary forced choice between two options7>*%.

These heuristics might not transfer well to other use cases for probabilistic inference in humans, where the

*Gigerenzer 5+ does address a version of the ‘why’ question by characterizing heuristic judgment as an adaptive
response to structure in the environment, by claiming that heuristics are ‘ecologically rational’. I discuss thisin greater
detail in the next section.
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structure of the problem can be significantly more complex. In addition, the procedures used to isolate
and understand heuristics so far — by studying deviations from normative inference in these explicit de-
cision making tasks — might not apply to these other more complex domains, since isolating and testing
interpretable deviations from normativity in such complex domains is challenging. A broader, more gen-
eral theory of how heuristic inference arises in humans, as driven by concrete underlying principles, would

allow a more general theory of probabilistic inference in intelligent systems that spans domains.

2.2.2 COMPUTATIONAL RATIONALITY: OPTIMIZATION UNDER CONSTRAINTS

Another approach is to explicitly account for the costs of computation in the overall optimization, i.e., to
extend the principle of rational analysis to bounded agents. These approaches entail specifying the costs
of information-gathering, cognitive resources, and time, as well as specifying an algorithm for computing
a response that makes specific demands on these resources. By including these resource limitations in the
optimization problem, we arrive at a ‘boundedly rational’ solution.

This problem can be discussed at different levels ranging from a computational-level account that de-
scribes the problem being solved but does not propose a plausible mechanism, to more mechanism driven

accounts. At one end is to simply describe behavior as resource-rational +¢7:4°°

and posit a new optimiza-
tion problem that accounts explicitly for the costs of internal computations. This approach however,
punts the original problem of intractability one step ahead — the new ‘boundedly rational’ objective func-
tion, which accounts for resources in addition to the original optimization objective, might be even harder
to optimize than the original optimization. While this approach has great explanatory power, it still leaves
open the question of how humans might be achieving this bounded rationality.

A middle ground is to build rational process models 180

39673 These make specific claims about how the
original optimization problem might be approximated, and demonstrates how limitations on information-
gathering, cognitive resources, and time — during the process of approximation — could lead to deviations
from normativity. Many of these approaches still retain an interpretation as computational or resouce

rationalit: ceasing additional investment of time or cognitive resources is a (conscious or sub-conscious)

choice. This choice is made by computing the marginal utility of additional investment (also often for-
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malized at the value of computation®®), and deciding whether this additional utility is worth the cost of

the investment>8°

. The assumption is that increased investment of computational resources will start
providing smaller and smaller gains to the marginal utility, whereas the cost of resources remains constant.
Therefore, we will reach a certain degree of resource / computational investment, where additional invest-
ment is no longer worth it.

To naively compute marginal utility however, we need to know how much closer we would get to the
normative response with additional investment. If we do not know the normative response, it is not pos-
sible to measure how close we are or will be to it. The question remains therefore of how to decide when
to stop investing computational resources. Certain properties of the cost function (including the cost of
resources) can alleviate this issue. In particular, if the cost function is convex and smooth, then the opti-
mization can be performed using local gradients. In this case it is possible to tractably compute whether we
have arrived at the ‘optimal’ trade-off between proximity to the normative response, and computational
investment (see Section 3.4.2 for details).

In Chapter s I introduce a rational process model for probabilistic inference where the cost function
has these properties. However, several other models for resource-rational inference might not fall into

this smooth optimization regime. *®3719%

While much progress has been made in characterizing several
behaviors as resource-rational, they continue — without further assumptions — to fall into the trap of being
an ‘as-if” model without a realistic proposal of how boundedly normative behavior could be implemented.

One approach is to learn a predictive model that learns (using past experience) the optimal trade-off
point, based on features of the problem. This constitutes a form of amortization, that leverages memory
and structure in the environment to make this problem more tractable. Learning predictive models for
the optimal stopping point can be extended to a rational solution to the strategy selection problem*7°
where the accuracy and cost of each heuristic is learned (or amortized) over experience with reinforcement

learning and chosen between. %!

This however, still leaves open questions like where these heuristics
come from in the first place, as well as fails to account for how people form inference strategies in cases
where external feedback is unavailable. In Chapter 7, I introduce a formalism where heuristics can be

learned as well as selected without explicit feedback.
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Further, most rational process models are based on domain-general algorithms, and thus struggle to ex-
plain the context-sensitivity of inferential errors (see Mercier & Sperber3°# for a similar argument). Some
models explain why certain kinds of queries induce certain kinds of errors”?, but do not explain how errors

can be modulated by other queries in the same context™?

74, As a broader implication of being domain-
general, these approaches suggest potential explanations for biases in human inference by positing limita-
tions on computations — but do not provide explanations for how people (with the same limited compu-

tation) can sometimes perform so close to optimally in certain domains.

2.3 ECOLOGICAL RATIONALITY

The two approaches in the previous sections — of heuristic inference and rational process models — have
some common ground; certain heuristics might be considered accurate approximations™»*>», The ap-
proach of understanding heuristic inference as fast and frugal hacks that result in adaptive behaviors has
been furthered significantly by the research program in Gigerenzer & Gaissmaier *7. This program sug-
gests that heuristics are not simply sub-optimal hacks that serve error-prone human inference, but rather
that they leverage underlying structural information in environments to make smart inferences without
excessive investment. This idea is termed ecological rationality. It traces back to Simon*7. He used the
famous analogy of a pair of scissors for human inference, where one blade represents the cognitive limi-
tations of humans and the other the structures of the environment. This analogy illustrates how minds
compensate for limited resources by exploiting known structural regularity in the environment. It has
however, largely dropped out of the limelight in psychological research, with the majority of approaches
focusing on internal mechanisms, with relatively little focus on the environment.

A crucial exception to the broader oversight of ecological rationality in psychology is the work of .
However, while this literature has extensively studied the ecological rationality of ‘fast and frugal’ heuristics
in real-world decision environments, many of these studies remain tied to specific judgment and decision-
making domains. These cannot be generalized since they do not make explicit claims about underlying
mechanism. For example, it is not immediately obvious how patently decision-centric heuristics like ‘take-

the-best (where the value of two alternatives is decided by the first cue that discriminates between the alter-
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natives, if the cues are arranged by cue validity) apply to say a continuous space of options, or to estimating
the value of a option directly (rather than comparatively), or when the options are not explicitly provided
but have to be constructed. In addition, it remains to be shown how — even in the standard judgment and
decision-making domains — such heuristics are learned and chosen for the specific environment at hand.
On the other hand, the rational process model literature provides more generalizable models that can
apply across domains and tasks, since they are based on underlying mechanism. But they fail to account
for structure in the environment, since by the very virtue of these algorithms being domain-general, there
is no adaptation to specific environments. They are therefore unable to explain differences in performance
— either in how normative people are, or in the specific deviations from normativity people exhibit — across
different domains. Certain rational process models that do explicitly take feedback from the environment
within a domain general procedure, fall into the strategy selection trap — where optimally choosing the
‘right” heuristic remains intractable and outside the scope of realistic psychological mechanisms. In cases
where there is some adaption to environments by learning strategy selection from previous experience (via
amortized planning in a reinforcement learning model, see Chapter 4 for details), this adaptation relies
on external feedback which is not always a reasonable assumption. Further, it continues to require the

pre-specification of the heuristics under consideration.

2.3.1 ALGORITHMIC APPROACHES TO ECOLOGICAL RATIONALITY

This thesis proposes an approach that combines the complementary advantages of the heuristics and biases
approach with rational process models of inference. I show how the principle of amortization (discussed
in Chapter 4) can be used to facilitate approximate Bayesian inference, and lead to ecologically rational
heuristic behavior in human probability judgment. This can be applied across domains and tasks, since
it specifies underlying mechanisms (similar to a rational process model), but also allows adaptation to the
environment. These models can explain both how humans make good decisions with limited resources
in certain domains (similar to heuristic approaches), as well as the context-sensitivity of inferential errors
(overcoming the strategy selection problem). This paves the way forward to a more comprehensive view

of bounded rationality in human inference. In the following two chapters, I expand on the conceptual
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framework for this approach: first by discussing approximate solutions to exact probabilistic inference,
followed by a discussion of amortized computation.

Ialso discuss how this approach (of explicitly studying the role of the environment in acquiring domain-
specific amortized inference strategies) can inform the study and engineering of artificially intelligent sys-
tems. I demonstrate how analysis and manipulation of learning environments can provide insight into
how to artificially develop central tenets of intelligence like causal inference and natural language, as well

as inform the underlying mechanisms of how humans acquire and implement these complex behaviors.
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Approximating Bayesian inference

This chapter provides a brief introduction to the approximate inference methods that will be used through-
out this thesis. These form the backbone of most rational process models for human cognition, as well as
of algorithms for machine intelligence in a structured probabilistic models framework. First, I introduce
the computational problem we hope to approximate and explain why it is challenging. Second, Iintroduce
sampling-based approaches, focusing on methods based on Markov chains. Third, I introduce variational
approaches to this problem. Finally, I briefly discuss the trade-ofts between these two methods, and how

they might be combined.

3.1 THE CHALLENGE OF BAYESIAN INFERENCE

Bayesian inference is a method in statistics where Bayes’ theorem is used to update the probabilities of
hypotheses i € H (where H specifies the space of possible hypotheses) as more information or datad € D

(where D represents the space of values observed data can take) is made available. We consider a simple
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coin-flipping example: here we wish to update the probabilities that a coin is biased towards Heads (/1),
is biased towards Tails (%), or unbiased (%9) based on observing the results of coin flips (d € {H, T}
for heads or tails). Bayesian inference has two key components each together form a statistical model for
the observed data. First, a prior distribution P(%) defined over all hypotheses # € H that determines
the a priori probability of a certain hypothesis. In our coin flipping example, without any data, we are
likely to have a fairly high expectation that a coin is generally unbiased. This gives high prior probability
to hy, and lower prior probabilities to /1 and A3. Second, a likelihood function P(d|h) that defines the
probability of observing different kinds of data given, specific hypotheses. So in our coin-flipping example,
the likelihood is a Bernoulli probability distribution given by P(H|h) = ¢ = 1 — P(T|h) = 1 —
g with different parameters ¢ for the hypotheses 4o, 41 and hy. The goal then is to combine these two
picces of information — a priori knowledge via the prior distribution, as well as information from the data
observed via the likelihood function — to form a posterior probability distribution over the hypotheses. This

is represented as P(h|d) and computed using Bayes’ rule as follows:

B P(d,h) B P(d|h)P(h)
PON) = = "Bd i) ~ Sy Pl P(I0) G2

The numerator i.e. the joint distribution over the data and the hypothesis is easy to compute since we
already know the two components — the prior and the likelihood, and these just need to be multiplied. The
denominator however requires a summation over all the possible hypotheses. This is tractable in our coin-
flipping case since, in the specific and limited way in which we have formalized the problem, the space of
hypotheses is very small (3 possibilities). However, for several problems of practical significance — includ-
ing many that humans solve everyday — this summation (or integral) is intractable.” For example, consider
a clinician diagnosing a patient. A patient can simultaneously have any of N possible conditions. This

means that the hypothesis space contains 2" hypotheses. Or consider the segmentation problem, faced

“There exist priors and likelihoods such that this integral remains tractable even for large or continuous hypoth-
esis spaces. These are called conjugate families of prior and likelihood. However, many real world data generating
processes cannot be well approximated by distributions from such conjugate families.
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Figure 3.1: Schematic for Monte Carlo approximation.

constantly by the visual system, of assigning each retinotopic location to the surface of an object. If there
are K objects and N locations, the hypothesis space contains KN hypotheses. Such vast hypothesis spaces
render exact computation of Bayes’ rule intractable, because the denominator (the normalizing constant,
sometimes called the partition function or marginal likelihood) requires summation over all possible hy-
potheses. Computing this normalization constant s the key computational challenge in Bayesian inference,
and computing exact posterior probabilities of hypotheses. In the following sections, I will introduce the

two main approaches to approximating such posteriors.

3.2 MONTE CARLO METHODS

Sample-based approximations, also known as Monte Carlo approximations376, take the following form:

N
P(h|d) ~ Py(h|d) = IZH (3.2)
n=1

where I[] = 1 when its argument is true (0 otherwise) and 4, is a random hypothesis drawn from some
distribution Q,, (k). A schematic is in Figure 3.1. When Q,(h) = P(h|d), this approximation is unbiased,
meaning E[Py(h|d)] = P(h|d), and asymptotically exact, meaning limy_, o Py(h|d) = P(h|d). This

approach is also straightforwardly generalized to sets of hypotheses: Py(h € H|d) = 5 LS [k, € H),
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where H C H.

In general, we cannot directly sample from the posterior, because the normalizing constant P(d) =
>, P(h, d) requires the evaluation of the joint probabilities of each and every hypothesis and is therefore
intractable when the hypothesis space is large. In fact, sampling from the exact posterior entails solving ex-
actly the problem which we wish to approximate. Nonetheless, it is still possible to construct an asymptoti-
cally exact approximation by sampling from a Markov chain whose stationary distribution is the posterior;

this method is known as Markov chain Monte Carlo (henceforth referred to as MCMC). ™

3.2.0 ALGORITHMIC DETAILS

In this section I describe a specific variant of MCMC called Metropolis-Hastings. I will briefly also discuss
another variant, Gibbs sampling, as a specific case of Metropolis-Hastings.

We assume that the joint distribution is known. Therefore, although we cannot evaluate P(h|d) at
any given / since we do not know the normalization factor, we can evaluate relative probabilities between
the probabilities of two hypotheses. We also assume a proposal distribution Q(h). We will discuss the
importance of the choice of this proposal distribution later in the section.

The goal is to generate samples from some probability distribution P(%|d). The output therefore
should be a set of different hypotheses (denoted ) that occur with frequencies determined by P(h|d).
This set S determines our sample based approximation Py(h|d). Its size is determined by how many steps

N we run the chain for. The procedure we follow is:
* Start the Markov chain at any random hypothesis 4. Add it to S.
* Propose a new hypothesis 4’ by sampling Q.
P |d)Q(h)) 1)

* Calculate the Metropolis-Hastings acceptance probability @ = min (W’

* Flip a coin that lands Heads with probability a.

“There exist other Monte Carlo methods that do not simulate a Markov chain. These include accept-reject
methods and importance sampling. While these have the advantage of producing uncorrelated (i.i.d, independent
and identically distributed) samples, they do not scale well to high dimensions, and often require pre-existing knowl-
edge of the posterior. This makes MCMC methods the predominant Monte-Carlo method used for Bayesian infer-
ence.???
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* If the coin lands Heads then accept the proposal A’ and add it to S. Else reject the proposal and stay
at h and add it to S again.

¢ Repeat SthS 2 onward N times.

This results in a Markov chain with P(%|d) as its stationary distribution, see Blitzstein & Hwang? for
proofs. As N — 00, the approximation Py(%|d) asymptotically approaches the true posterior P(h|d). See
Holden 19982 for proofs.

What remains to be decided is what a good proposal distribution might be. As along as the proposal
distribution ensures a finite probability of proposing every state at some point along the chain (ensures
ergodiciry), the samples will converge asympotically to the true posterior. However, the closer the proposal
to the true posterior, the faster the algorithm converges on average. ** The proposal distribution can also
depend on the current state of the Markov chain, allowing for local adjustments to the current hypothesis.
This often leads to good acceptance probabilities since the posteriors are often smooth — meaning if a
hypothesis has high probability, so will hypotheses that are ‘close’ to it. Another well known variant of
MCMC called Gibbs sampling can be seen as a variant of Metropolis-Hastings, with a specific proposal
distribution such that the proposals are always accepted. Here the sampling is over ajoint distribution over
hypotheses h that have multiple (k) dimensions. The hypothesis along only one of these dimensions 4; is
changed in every step, and the proposal distribution is the exact conditional distribution O = P(h;|h;. K\,-).
Substituting this into the formula for the acceptance probability, we can see that this proposal is always
accepted. The conditional distributions however are not always easy to compute, making Metropolis-
Hastings a more general purpose MCMC algorithms (though with the added worry of choosing a good

proposal distribution).

3.2.2 HisTORY

Sampling methods based on Markov chains were first developed in physics to study properties of the Boltz-
mann distribution in statistical mechanics.*” For a system at equilibrium, the relative frequency of a con-

figuration @ is given by its Boltzmann weight
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e—E(a))/kT (33)

where T'is the temperature and £ is the Boltzmann’s constant, and E(w) is the energy of the configura-

tion @. The probability distribution over configurations therefore is given by

o—E(@)/kT o—E(@)/kT

P(CO) = 7 = Z ,e—E(a)’)/kT (3-4)
®

where the denominator Z is called the partition function. This partition function in realistic cases is
computationally intractable. This has striking resemblances to the problem of Bayesian inference we de-
scribed above — where relative probabilities are easy to compute, but exact probabilities are prohibitive
due to the evaluation of an intractable normlizing constant. Some modern MCMC methods like Hamil-
tonian Monte Carlo*? explicitly form a Hamiltonian, assigning energies to different states, and formulate
the probability distribution as a Boltzmann distribution over these states.

The original paper Metropolis et al. ** introduced the Metropolis algorithm, where the proposal is lim-
ited to being symmetricand local. It was further generalized, and formalized mathematically in Hastings 196
to give the modern Metropolis-Hasting algorithm described in the previous section.

Versions of MCMC were then applied to optimization problems in the form of simulated anneal-
ing**, widening their reach outside of statistical physics. The first Bayesian perspective (as well as a new
MCMCalgorithm, Gibbs sampling) came from an application of MCMC to the problem of digital restora-
132

tion™. These methods have since been widely applied in physics, engineering, and artificial intelligence,

see Richey 77° for further details on the history of MCMC.

3.2.3 MONTE CARLO METHODS IN MODELS OF COGNITION

Sampling theories have long been invoked, implicitly or explicitly, in models of human cognition to jus-

tify variation in responses across individuals and trials. In studies demonstrating optimal Bayesian be-
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havior in the average, it has often been found that individual reponses arise from the full range of the
distribution, with frequency proportional to the posterior probability, in a phenomena called ‘probabil-

> 483,86,316,467 - More recently,‘rational process models’ have explicitly modelled sampling as a

ity matching
mechanism to drive a stronger connection between rational models of cognition and psychological mecha-
nisms#4467:412:394:275527 see Sanborn & Chater *”' for a review. These highlight phenomena that emerge in
the finite sample regime, within a ‘resource-rational’, or computational rationality framework #7444
this framework posits that if generating samples is costly (in terms of time and cognitive resources), then
the rational strategy is to generate the minimum number of samples necessary to achieve a desired level
of accuracy. Such a formalism explicitly bridges the requirements from a computational level account of
inference, with the cognitive processes that implement it. "

We have so far discussed the advent of Monte Carlo approximations in cognitive science more broadly,
without considering specificalgorithms for it. The two main contenders have been importance sampling
and MCMC?7. In this thesis we discuss MCMC in particular for a few reasons. First, MCMC does not
require knowledge of normalized probabilities at any stage and relies solely on an ability to compare the
relative probabilities of two hypotheses. It has been shown in the literature#* that humans have a bet-
ter sense for relative rather than absolute probabilities. Second, MCMC allows for feedback between the
generation and evaluation processes. The evaluated probability of already generated samples influences if
and how many new samples will be generated, consistent with adaptive generation of samples like in Ham-
rick et al.#. Third, Markov chains generate autocorrelated samples, consistent with autocorrelation in
hypothesis generation"#7#%%# Correlation between consecutive samples manifested as anchoring effects
(where judgments are biased by the initial hypothesis +7) are replicated by MCMC approximations that are
also transiently biased (during the‘burn-in’ period) by their initial hypothesis, prior to reaching the station-
ary distribution *”>. Finally, work in theoretical neuroscience has shown how MCMC algorithms could be

realized in generic cortical circuits*%¥%*”. In Chapter s we discuss in greater detail the unique predic-

tions of MCMC as compared to other sampling algorithms that have been explored in the psychological

*As discussed in Chapter 2, a problem that still impacts these sampling algorithms is of how to know how much
to sample. I present a possible solution to optimal stopping (without unrealistic demands on cognitive resources) in
Section 3.4.2.
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Figure 3.2: Schematic for Variational approximation.

literature, like importance sampling.

3.3 VARIATIONAL METHODS

To motivate variational approximations, we first consider a more general case of Monte Carlo approxima-

tion, using weighted samples

N
P(hld) Y w'I[i" = h], (3.5)

n=1

Monte Carlo algorithms can be thought of as procedures for generating an approximate posterior Q,, (h|d)
parametrized by the set of these weights and samples, ¢ = {w", /"}Y_|. In MCMC, these weights are
always one, but methods like importance sampling posit non-unit weights. The superset @ of all feasible
sets (i.e., the sets that can be produced by a particular Monte Carlo algorithm) is defined as the approxima-
tion family of this algorithm. This allows us to formalize a more general view of approximate inference as

an optimization problem: find the approximation (parametrized by ¢ € @) that gets ‘closest’ to the true
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posterior, where dissimilarity between the two distributions is measured by a divergence functional D.

¢" = argmin D[Q, (h|d)||P(h|d)], (3.6)
ped

Monte Carlo algorithms do not solve this optimization problem, but instead randomly sample ¢ such
that, in the limit N — oo, they produce ¢*. It is however possible to design non-randomized algorithms
that directly optimize ¢ even in a sample-based approximation® and in fact form the basis for optimal
stopping in sampling-based rational process models discussed in Section 3.4.2. Such optimization is an
example of Variational Inference®®.

The general idea of Variational Inference (VI) is to first posit a family of densities and then to find a
member of that family which is closest to the target probability distribution. Classic variational methods
use the Kullback-Leibler divergence (also known as relative entropy) as a measure of closeness. This is
given by:

Oy (h|d)
P(h|d) °

Diw[Qy (h[d)||P(hld)] =) Oy (h|d) log (3.7)

h

This formulation reduces the problem of approximate inference to an optimization problem to which any
standard algorithm for optimization may be applied. An example with a Gaussian approximation family
and an iterative optimization procedure is given in Figure 3.2.

In general however, this divergence cannot directly be optimized, since finding a Q that optimizes Dy,
requires knowing the exact P. We of course cannot already know the exact P, since it is precisely the dis-
tribution we are trying to approximate. Instead we optimize an alternative objective that is equivalent to

D1, up to an added constant. This is called the evidence lower bound (ELBO) and is given as follows:
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ELBO[Q, (h|d)] ZQ¢, h|d) lo (( |d))

= ZQ@ h\|d)lo ((h +ZQ¢ h|d) log P(d)

— —D[0,(h]d)||P(h]d)] + log P(d) 6:8)

This function is also known as the negative variational free energy. The term ELBO comes from the
fact that £[Q, (h|d)] is a lower bound on the ‘evidence’ (log marginal likelihood) log P(d), since a KL
divergence between any two distributions is restricted to be greater than or equal to zero. Since the evidence
in a specific situation is fixed, maximizing the ELBO will produce the same variational approximation as
minimizing the KL divergence. Critically, the ELBO eliminates the dependence on P(/|d), only requiring

access to the unnormalized posterior, the joint distribution P(h, d).

3.3.1  ALGORITHMIC DETAILS

Algorithms for variational inference vary on two dimensions. First, the specific variational family we use
can vary, and how good of a fitit is to the aspects of true posterior that we wish to capture. Unlike MCMC,
variational inference does not have any formal guarantees about asympotically reaching the true posterior
— for example, if the variational family chosen does not actually contain the true posterior, the variational
approximation never converge to the exact distribution. Different choices of the approximation family
can give vastly different approximations. Second, the optimization algorithm used can vary. This also
interacts with the choice of variational family — with the goal of allowing maximum complexity in the
variational family while managing the complexity of performing the optimization effectively. Note that
exactly computing the ELBO (Equation 3.8) still requires an expectation over Q,, which may not always be
tractable, and may need to be approximated. This makes optimizing even the ELBO a non-trivial problem.

In this section we concentrate on one approach to variational inference. We use deep neural networks

82,241,310,368,341

as flexible function approximators , and optimize the parameters of these networks (as the

variational parameters). This allows us to leverage the developments made in gradient based optimzation

26



of such architectures. The idea is that the network takes in the relevant information about the data d that
we want to condition on and produces some output. These outputs can be interpreted as the traditional
notion of ‘parameters’ of a variational family ¢ — for example if we were considering a Gaussian variational
family then the outputs could be the mean and variance. However, these ‘parameters’ are produced by the
parameters of the neural network, and we can directly optimize these network parameters instead, utilizing
much of the progress made in recent years in efficiently and scalably training neural networks. Another
advantage of this approach is the ease of amortization, which is discussed in further detail in Chapter 7.
Even given the ease of gradient-based optimization of neural network architectures (using the backprop-
agation algorithm), we still need to first find the gradient of the cost function (the ELBO) with respect to
our variational parameters. We describe an approximate technique for optimizing the ELBO known as
blackbox variational inference’*® where we directly approximate the gradient of the ELBO with respect
to our variational parameters. This still requires the computation of an expectation over Q,,, which is

tractably approximated with a set of M samples:

M
VELBO[O, (Hd)] = 1>~ U, log 0,(i"|d) [log P, ) ~log Qy(A™)] . (3)

m=1

where /" ~ Q,(h|d). Using this approximation, the variational parameters can be optimized with stochas-

tic gradient descent updates of the form:

i1 < ¢+ p,V,ELBO[Q, (h]d)], (3.10)

where ¢ indexes iterations and p, is an iteration-dependent step-size. Provided p; satisfies the Robbins-
Monro stochastic approximation conditions (3 .2, p, = 00,> >, p; < 00), this optimization proce-
dure will converge to the optimal parameters with probability 1.

3.3.2 HIsTORY

The history of variational inference is more difficult to trace since it is a broader concept intimately tied to

the history of optimization. Some of the first variational approximations, recognizable as such, appear in
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statistical physics as mean field theories. The first of these was the Curie-Weiss theory for ferromagnetism,
that made a mean-field approximation to the Ising model’**7%. Here, the local field at each point on a
lattice is approximated by a global field that applies uniformly to the whole lattice. This effectively ignores
correlations between the lattice sites. In the language of probability distributions this constitutes approxi-
mating the probability distribution P(Z |d) defined over a potentially complex joint distribution over the
K dimensions of & (the magnetizations at different lattice sites for example), with a factorized distribution

O, where

K
o(hd) = [T 0y, (nila) (3.)

The parameters ¢.x defining the parameters of the variational family are then optimized. Here, the correla-
tions between the different dimensions are neglected. Subsequent to this model, several other mean field
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theories were developed across other domains of physics. Following these, Landau *** formalized mean

field theory as a variational approximation *°

. Concurrently, variational approaches were also applied to
problems in quantum physics and quantum field theory**7™.
Variational approaches are also used in statistical physics in the context of the partition function prob-

lem discussed in the section on sampling*+***

. While Markov chain Monte Carlo can simulate samples
from unnormalized Boltzmann distributions (Equation 3.4), and thereby provide normalized probabili-
ties, sampling methods cannot provide an actual value for the normalization constant or partition function
Z. The negative logarithm of this partition function is the free energy. By the principle of minimizing en-
ergy, equilibrium states in physical systems will minimize this free energy. The logarithm of this partition
function is also the log marginal likelihood of the data, or the ‘evidence’ in the language of probabilistic
inference. We can use variational inference to to approximately minimize this free energy, by instead max-
imizing the ELBO (the lower bound to the evidence).

The development of variational methods specifically for Bayesian inference arguably started with a
mean field learning algorithm for neural networks in Anderson & Peterson’, followed by formalization of

variational approximations to a slew of other models*”*®. These approaches have been extensively stud-

ied in statistics and machine learning, and provide a strong alternative to MCMC for scalable posterior
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Variational methods have been evoked in models of human cognition both implicitly and explicitly.
Certain models of human perception ** and associative learning®® make implicit assumptions about what
moments of a distribution humans track — in some cases these can be interpreted as a variational approxi-
mation with a Gaussian family. Studies of cognition that invoke the Free Energy Principle via the notion
of active inference' explicitly claim a variational framework. This approach to approximate inference
has also been studied from a neuroscience perspective, where its appeal lies in allowing us to contemplate
complex, biologically realistic approximation architectures (provided that the optimization procedures can
also be realized biologically; see Whittington & Bogacz**"). For example, particular implementations of

variational inference have been used to model hierarchical predictive coding in the brain+?.

3.4 HYBRID METHODS

Sampling methods like MCMC and variational methods usually trade-off in expense vs precision. MCMC
can be very slow to converge, in particular when the parameters being inferred are high dimensional. Each
sampling step can be expensive if we are conditioning on a very large data-set. However, they come with
an asymptotic guarantee — if the algorithm is run for long enough, the approximation converges to the
true posterior. On the other hand, variational methods are much cheaper. Optimization is fairly well
understood problem with many advances in improving convergence speed. With stochastic approaches
to this optimization problem, each step of the optimization can also be made very easy. We also reserve
a lot of flexibility in how good of an approximation we want by choosing how expressive our variational
family is. However, the convergence of this optimization does not guarantee that we have reached the
true posterior. Several recent methods in the machine literature combine the complementary advantages

of these approximation method leading to several new algorithms 953,

These two approaches also
have different characteristics when considering amortization or re-use of inference, we discuss this briefly
in Chapter 4.

Prevailing ideas about approximate inference in cognitive science are largely grounded in a hypothesis

sampling Monte Carlo framework (see Sanborn & Chater ** for a review), with small numbers of samples.
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In this thesis, I introduce a variational approach in Chapter 7 and how it can expand the scope of ratio-
nal process models by providing a framework for the flexible re-use of computation. Below, I discuss a
few concrete possibilities for how sampling and variational approaches might be combined to build new,

testable models of human probabilistic inference.

3.4.1 PROPOSAL DISTRIBUTION

Almostall Monte Carlo methods rely on a proxy distribution for generating samples. Markov chain Monte
Carlo methods construct a Markov chain whose stationary distribution is the true posterior, often making
use of a proposal distribution to generate samples that are accepted or rejected. Importance sampling
methods simultaneously draw a set of samples from a proposal distribution and reweight them. Particle
filtering methods apply the same idea to the case where data are observed sequentially. One natural way
to combine variational inference with these methods is to use the variational approximation as a proposal
distribution. This idea has been developed in the machine learning literature e.g. in De Freitas et al. 8 Gu
etal.”, but has not been applied to human judgment.

For Markov chain Monte Carlo methods, another possibility would be for the variational approxima-
tion to supply the initialization of the chain. If enough samples are generated, the initialization should
not matter, but a number of cognitive phenomena are consistent with the idea that only a small number
of samples are generated *°%, thereby producing sensitivity to the initialization. For example, probability
judgments are influenced by different ways of unpacking the sub-hypotheses of a disjunctive query” or
providing incidental information that serves as an ‘anchor’ 275276 In these studies, the anchor is usually pro-
vided as an explicit prompt in the experiment — variational approximations could provide such an anchor
for a new query in the absence of an explicit prompt.

The quality of the proposal distribution as well as the sampled initialization (in terms of its proxim-
ity to the true posterior) determines the speed of convergence of a sampling algorithm**+. We will see in
Chapter s how an un-converged sampling approximation can explain several cognitive biases. Variational
inference provides a mechanism for learning a good proposal distribution or initialization over time. Using

this within a sampling framework could explain why people show different degrees of biases in different
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domains, despite similarity in cognitive resources, i.e. a similar number of samples.

3.4.2 OPTIMAL STOPPING

The computational rationality perspective on sampling argues that the number of samples is chosen adap-
tively to balance the benefits of taking more samples against their costs in time and energy#++¢7%°_ To find
the optimal stopping point, we need to compute the value of additional samples, and decide whether it
outweighs the cost of taking these additional samples. A naive approach to finding the value of additional
samples is to examine how much closer this gets us to the true posterior distribution. This however is cir-
cular, since the true posterior is what we are trying to approximate in the first place. So we cannot compare
our current approximation against it. I discussed this problem in Chapter 2 in Section 2.2, when consider-
ing concerns with current models of resource-rationality or computational rationality — that knowing the
optimal stopping point, in the most naive sense, can be more expensive that the original computation we
set out to approximate.

There are however ways to get around this for certain classes of rational-process models, including the
sampling mechanism proposed in this thesis in Chapters s and 6. To understand this, we first formalize

the boundedly rational cost function. If the approximate posterior is given by

PUhld) = Py(hld) = T = B, (3.12)

Then the bounded rationality objective function is a function of the distance D between this approxi-
mation and the true posterior, as well as the cost of the resources required to make this approximation. We
assume that cost scales linearly with the number of samples, with C per sample. This gives the following

objective F that we wish to minimize as a function of the number of samples (N):

F(N) = D[Py(h|d)||P(hld)] + CN (3-3)
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We choose the Kullback-Liebler (KL) divergence, or relative entropy, as the distance metric to get

F(N) = Dicc[Py(hld)||P(hld)] + CN (3.14)

_ZP (hd) lo P’z(};'a;) +CN (3.15)

Exactly computing this objective still requires the exact posterior to evaluate exactly. However, two insights

make this tractable. First, we note that the KL divergence can we written as follows (see also Equation 3.8):

D P4 [P = 3 P o (< &+ logPld) (516)
Here, the first term is computable since a) we know the joint distribution P(%, d), and b) we can take
expectations over our approximate distribution Py(/|d). The second term (the evidence or negative free
energy) remains intractable.

However, our second insight is that we do not need to compute the exact value of the objective func-
tion. Our objective function is a linear sum of smooth monotonic functions: the KL term decreases (on
average) with increase in the number of samples, and the cost term increases. Therefore, our cost function
is convex, and the global minimum can be found simply by following local gradients. This smooth, convex
assumption does not hold for many other classes of resource-rational approximations, for example, if we
are optimizing over the space of discrete strategies (eg. whether to employ a certain heuristic or another),
rather than optimizing over an (almost) continuous parameter like the number of samples drawn. This

local gradient (or the incremental value to one additional sample) is given by:

FIN41) — F(N) = ZPN+1 h!dlgP]}]jlh‘Z’d ZPNh]d ((“g) vC o)

Since the second term in Equation 3.16 is the same in both, it cancels out, leaving a tractable expression for
the gradient. The gradient can therefore be estimated locally everytime a new sample is drawn. Once this
gradient starts to become negative, it is time to stop computations. This can be seen as treating the sample

based approximation as a variational family and finding the optimal number of samples388, pointing to
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another important way in which sampling methods and variational methods can be combined to give

more complete models of human probabilistic inference.
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Amortization: Memory as a computational

resource

In this chapter, I introduce the concept of amortization. The word refers more generally to the concept
of spreading costs, usually over a period of time. In our case, these are computational costs that can be
amortized by re-using parts of previously computed solutions. Therefore, simply by remembering past
solutions to problems, and flexibly re-using them in the face of new problems, we can use memory as a
computational resource to ease the burden of real-time computation to solve new problems.

In this chapter, I will first discuss how amortization can resolve the intractability of Bayesian inference,
bringing it within the realm of the psychologically plausible. I then discuss how it can explain differences
in context- and domain-sensitivity in inferential errors — both in terms of how likely errors are in the first
place, as well as in terms of the specific kinds of errors observed — by implementing ecologically rational

heuristic behavior. I will then move on to outlining how amortization might be realized algorithmically
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within the models for approximate inference discussed in Chapter 3, as well as in the machine learning
methods that form the base for Chapters 8 and 9. Finally, I discuss how amortization has been implicit in
several models of human cognition (both within and beyond models for human probabilistic inference)

and discuss the value of the approach I take in this thesis, of addressing amortization more explicitly.

41 TwWoO KINDS OF KNOWLEDGE

There are two distinct aspects to making an inference. The first is to have the relevant information from
the external world that will best inform that inference. In the context of the domains this thesis concerns,
this means having a good (structured, probabilistic) generative model for how that aspect of the world
works, either from previous experience, or through instruction, or in the case of artificial systems by ex-
plicitly encoding this information. Once a system has this information, it is in theory possible to make
normative inferences within this model. But these normative inferences remain to be computed. The sec-
ond aspect therefore is to actually perform the computations that result in an inference: compiling abstract
understanding of the world (in the form of a model) to an actual response. We refer to the first kind of
information as ‘potential knowledge’, since all optimal inferences are in theory possible to compute once
this information is available. We refer to the results obtained by actually computing inferences in such a
model as ‘realized knowledge’.

We give an example for intuition. Once we learn the rules of mathematics, the proofs of all the theo-
rems in the world are included in potential knowledge. However, only a small subset of these proofs can
and will actually be computed by anyone who knows the rules of mathematics. This subset is realized
knowledge. Arriving at each of these proofs requires some work. Even if we already know the rules of a
domain (suggesting that all potential knowledge is within reach), going from that to realized knowledge
can require prohibitive amounts of computation. These computations cost resources. It is these costs that
we wish to amortize.

In this thesis, we are concerned primarily with the computations involved in going from potential to
realized knowledge. All of the experiments and models in this thesis concerning human cognition assume

that people have already acquired potential knowledge, and we discuss how the costs of going from this
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to realized knowledge (i.e. actually making inferences in a provided probabilistic model) might be amor-
tized. In our discussions of artificial intelligence, the line between realized and potential knowledge is more
blurred. We discuss this later in this chapter, as well as include a broader discussion of these two kinds of

knowledge in the Conclusion (Chapter 10).

4.2 AMORTIZATION AND ECOLOGICAL RATIONALITY

We assume for now that we already have potential knowledge, and the challenge is in performing the com-
putations that go from this potential knowledge to an (approximately) optimal response to a query. If
there is structure in the space of queries observed — such that similar queries appear often, or certain parts
of the hypothesis space are never queried — then it is wasteful to not leverage this structure and instead
simply recompute responses to each query independently every time it is encountered. The goal then is to
know when and how to re-use parts of previously computed responses. This amounts to amortizing the
costs of computing a response to a query over many previously encountered ‘similar’ queries, and thereby
using memory as a means for easing the burden of computation.

Amortizing the costs of computation is ‘rational’ only if there exists structure in the environment such
that we expect some similarity in queries encountered. This is guaranteed in any domain with finite hy-
potheses and infinite experienced queries, but will be more prevalent in certain domains than others. In
different environments, with different distributions of queries, different levels of amortization can be op-
timal. For example, if a query is rarely experienced, there may not exist adequate previous experience to
re-use. Further, the cost of storing and recovering previous solutions might not be worth the computa-
tional savings incurred from amortization — especially if the possibility of it being encountered again is
rare. However, when we have a large amount of experience in an environment, and there does exist some
additional structure in the space of queries, it becomes more rational to amortize computations. These are
the domains we focus on , and argue that the re-use of computations in such structured environments can
lead to ecological rational behavior - i.e. behavior that adapts to and exploits such structural regularities
in an environment.

We expand on the technical aspects of this adaptation, and formalize it more broadly and in greater detail
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Figure 4.1: Schematic demonstration of amortizing past queries. (A) The true posterior probability (indicated by colors
on the heatmap), as a function of the prior and likelihood for a generative model in which & ~ Bernoulli(po) and d|h ~
Bernoulli(pl). The contour lines depict the query distribution. (B) Amortized estimates based on previously encountered
queries (indicated by colors on the heatmap) are possible and reliable only in the space of frequently encountered queries (as
depicted by contour lines).

in Chapter 7, but Figure 4.1 provides some intuition for how environment sensitivity arises when amortiz-
ing computations. First, we see that good amortized estimates are only possible for frequent queries. In
Figure 4.1(b), we see that the queries for which the amortized approximation is close to the true probability
distribution are those that have been previously encountered (the frequency of queries is depicted by con-
tour lines). This could explain context-sensitivity in why people are so close to optimal for certain queries
in certain domains, but exhibit inferential errors in others — despite similar run-time computational re-
sources in both. Second, we see that there might be underlying, lower dimensional structure in the space
of frequently observed queries. These could allow effective heuristic strategies. In the example shown, we
see that the variance in the prior probability in the space of observed queries (the contour lines) is much
lower than the variance in the likelihood. Within the distribution of these observed queries, a heuristic
that only attends to the likelihood would perform reasonably well. In Figure 4.1(b), we see that the heuris-
tic ‘high likelihood implies high posterior’ (and similarly for low likelihoods) roughly holds. This same
heuristic however does not perform well in general in this domain, and would fail on queries that come
from outside the depicted query distribution. This explains the emergence of context-sensitive, ecologi-

cally rational heuristic inference.
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This mechanism for the emergence of ecological rationality addresses some of the concerns raised in
Chapter 2 about how ecologically rational behavior might come about. To briefly re-iterate the concern,
while heuristic behavior in humans has been characterized as ecologically rational ¥*, models that posit
such heuristics largely remain ‘as-if” models. They show that human behavior looks as though we are
implementing ecological rational shortcuts, but it remains to be understood how these heuristics arise, and
further, how one chooses the right heuristic for the right environment — with the computations required to
make this choice often being comparably expensive to computing the optimal response from scratch ™.
The mechanism of simply reusing inferences made in response to previously encountered queries in an
environment (and thereby amortizing the computations that go into computing these responses) suggests
a feasible way to implement ecological rational behavior. We will also show how implicitly amortized
inferences in algorithms for machine intelligence exhibit ecological rationality, and how an analysis of the

query distributions these systems encounter can provide insight into, and control over, their underlying

functioning.

4.3 FORMS OF AMORTIZATION

Amortization can take many forms, and leverage many different kinds of memory. The most general ap-
proach is to think of the computations amortized over previous experience as providing a sort of ‘response-
prior’ for new queries. Note that this is distinct from the prior over hypotheses in the domain we are car-
rying out inference. That is included in ‘potential knowledge’ and we assume it has already been learned.
The response-prior is information gained from previous computations — when going from potential to
realized knowledge in past queries. Crucially, we already possess the knowledge to make an optimal in-
ference from scratch, the response-prior simply provides heuristic, unstructured information that makes
arriving at a good inference — i.e. going from potential to realized knowledge — computationally cheaper.
The response-prior can take many forms. For example, it could inform the type of optimal response (e.g.
itis usually one or two words long), the rough location of the optimal response (e.g. it’s usually between 10
and 40), heuristic strategies for arriving at good responses (e.g. the best option is often the second most ex-

pensive one), or similarity functions to previous episodes (e.g. do exactly what I did last time I was playing
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a similar game, because that worked).

I briefly discuss how amortization is possible in the various algorithms for approximate inference dis-
cussed in Chapter 3. These will be discussed in greater detail in Chapters 6 and 7. T also briefly discuss how
discriminative methods in modern artificial intelligence that rely largely on pattern-matching, can be seen

as a form of amortized inference.

4.3.1 AMORTIZATION IN A SAMPLING FRAMEWORK

In a Monte Carlo framework, what can be re-used query to query are the samples themselves — or certain
summary statistics of the samples. Consider an example where we have samples from the space of hypothe-
ses h € H, sampled from the posterior distribution P(h|d), giving an approximate distribution P(h|d) .
Supposed we generated these samples in response to a query that demanded the posterior probability of
a specific hypothesis /1. The approximate responses in this case would be P(/ |d). Now, suppose we are
asked another query about the posterior probability of a different hypothesis 415. If we store these samples
and re-use them for this new query, we do not have to do any new computations — the sample-based ap-
proximate distribution P(h|d) can be used to respond to this new query without any additional samples
drawn. However, storing all the samples might be very intensive on memory. One possibility is that people
instead store certain statistics of the samples instead. This reduces how much flexibility we have for re-use,
but it reduces load on memory. We propose more specific algorithms for amortization in a sample-based
approximations, as well as test them in humans in Chapter 6.

A disadvantage of purely sample-based re-use is that it is less flexible when two queries are not querying
the same posterior distribution. The framework described so far provides no way to re-use samples from
P(h|d) in P(h|d"), even if d and d' are very ‘similar’. We will see in Chapter 6 however, that humans re-
use inferences flexibly across different posterior distributions as well, for example when d and @’ are not
the same, but similar is specific ways. I demonstrate how this can be modeled with re-use in a variational
framework in Chapter 7, where such flexible re-use is more feasible. The next section discusses re-use in a

variational framework in greater detail.
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Figure 4.2: Schematic for Amortized Variational approximation.

4.3.2% AMORTIZATION IN A VARIATIONAL FRAMEWORK

In a variational framework, the approximate posterior P(4|d) is a member of some parametrized family
that we choose. These parameters therefore can be re-used from query to query. A key advantage of repre-
senting the approximate posterior as a finite set of variational parameters (rather than a variable number of
random samples, as in sampling framework) is that it makes it easier to flexibly re-use inferences. I outline
below how this might be possible.

In Figure 3.2, we introduced a schematic for variational approximation. To better understand flexible
re-use in this framework, we consider a variant of this schematic in Figure 4.2. This figure highlights that
variational approximation determines a mapping from inputs (priors, likelihoods and data) to the output
(a posterior approximation). One path to go from the input to the output is to explicitly solve the varia-
tional problem. Over extensive experience in a domain, we will have solved this variational problem for a
variety of inputs. Therefore, we can build up a large number of such input-output pairs in memory. We
are then in a position to see if there are any patterns in this mapping from input to output, that we can
use to best inform future computations. This can be done by simply learning a regression function, from

previous input-output pairs, that maps a query (data, prior, likelihood) to an output.* This gives us a sec-

“The inductive biases we use when learning this regression function will influence the outputs predicted for new
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ond path to go from the inputs to outputs. When faced with a brand new query — that could be different
from others faced before — this mapping allows us to immediately have a guess for the approximate pos-
terior, by simply passing the parameters of this new query through our learned regression function. This
initial guess can be improved using the standard optimization procedure of variational inference, but will
usually require fewer steps of optimization (and fewer computational resources) if our initial guess is well-
informed (the learned mapping captures the right structure). In this way, we can use information gathered
from previously computed response to amortize the cost of finding variational approximations for new in-
puts. In Chapter 7, we show that many errors and biases observed in human probabilistic judgment are
explained by this mechanism.

Variational approximations still have the disadvantage that they have no asymptotic guarantees, unlike
sampling methods. A promising way forward is to combine their complementary advantages. Most Monte
Carlo approximations rely on having a good ‘proposal distribution’ that closely approximates the true pos-
terior, in order to converge quickly and provide good approximate posterior probabilities under realistic
limitations on the number of samples. We expect humans to be in this low sample regime when using
Monte Carlo methods, due to the limitations imposed by their cognitive limitations. Variational approxi-
mations could provide this proposal distribution. This way, we can retain the flexible re-use permitted by
variational inference, as well as the asymptotic guarantees of sampling. As we will see in Chapters s and
7, such a joint model allows us to parsimoniously explain a wide range of different inferential errors that
could not be modeled by any one mechanism alone. This is discussed in greater detail in the discussion

section of Chapter 7.

4.3.3 AMORTIZATION IN DISCRIMINATIVE MACHINE LEARNING

In this section, we briefly discuss how ‘pattern-matching’ methods popular in modern machine learning,
can be seen as amortizing inference over past experience. We limit our discussion here to a simple case
of discriminative classification. In the section on amortization in cognitive science, we also discuss vari-

ous reinforcement learning (RL) methods (that are also popular in modern machine learning) and their

inputs. See Chapter 7 for a more detailed discussion of this.
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interpretation as amortized inference.

The main difference between our discussion of amortization so far (in various approximate inference
methods) and most realizations of amortization in machine learning, is that for many machine learning
applications, ‘potential knowledge” has not already been acquired. It is instead obtained in tandem with
learning how to go from potential to realized knowledge. In other words, learning about the world, and
learning how to think are not done separately. These are called discriminative methods; as opposed to
generative methods that explicitly learn the generative model (potential knowledge) and then proceed with
inference in that model (realized knowledge). Both these approaches (generative and discriminative) are
ubiquitous in machine learning with competing advantages for each*?°¢ The machine learning methods
we discuss in this thesis (in Chapters 8 and 9) are discriminative. I give a simple example of discriminative
classification here, to give an intuition for how these methods can be interpreted as a form of amortization.

The basic classification problem is that of categorizing various inputs {x} into various classes {y}. This
can be seen as computing some probability distribution P(y|x) i.e. the probability distribution over class
labels given a specific input x;, and then employing some decision rule to assign that input to different
classes, based on the obtained distribution.” We can look at this as a multinomial (or binomial) posterior
distribution over class labels, conditioned on the data x. The difference between our previous discussions
and this one, is that we do not know the joint distribution already, and therefore cannot ‘learn’ this func-
tion by maximizing ELBO like we did in the variational case. Instead, a common approach is to learn it
with supervision — i.e. by receiving observations of the right classification, and maximizing the probability
of the true class labels under our discriminative classifier. Discriminative classifiers can also be learned via
reinforcement learning, as we will discuss briefly in the next section. The idea is that once this conditional
distribution P(y|x) has been learned over a series of training examples, this function can be used to predict
the conditional distribution in new test examples, or new x’s that have not been observed. This can be

done with a single pass through this learned regression from input to class label. In other words, the com-

“The generative approach to this problem would be to explicitly learn the model described by the joint distri-
bution P(x,y) = P(y)P(x|y), and subsequently use Bayes’ rule to find P(y|x). Inference in such generative models
can also be amortized, for example by using the approaches discussed earlier for amortization within approximate
inference algorithms.
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putations that would otherwise have gone into explicitly computing the posterior P(y|x), had we known
thejoint P(y, x) have been amortized, and have been encoded along with the relevant potential knowledge
about P(x, ), in this discriminative function. This is similar to the amortized variational approximation
we learn in the previous section, except the learning signal that we used to learn the function is different
(supervised or reinforcement learned in this setting, as opposed to via maximization of ELBO). In Chap-
ter 8 we study one such supervised classifier, and in Chapter 9, we consider a classifier that is learned via

reinforcement learning.

4.3.4 META-LEARNING AND AMORTIZATION

The idea behind meta-learning is to gain information over a distribution of learning tasks, about how to
learn in new tasks from the same distribution. In other words, we can learn to learn by abstracting out
higher level information about the space of learning tasks, and thereby benefit future learning. Many fea-
tures of a learning algorithm can be ‘meta-learned’ in this way, including the optimization algorithm to
be used in new learning problems™, good initial weight parameters™®, the right metric space for gauging
similarities#%, as well the use of external memory*”. In the same way that the discriminative methods
discussed in the previous section blur the lines between gaining potential knowledge and converting po-
tential to realized knowledge, meta-learning is agnostic to whether what it learns from its experience is new
information about the world (learning about the underlying process that is generating the distribution of
learning tasks), or how to make best use of information in a new learning task (faster, more efficient amor-
tized inference strategies). Meta-learning has been characterized as hierarchical Bayesian inference, where
what is being learned are abstract priors over the space of learning tasks. This is equivalent to the first
kind of learning, where what is gained is new potential knowledge: information about the space of tasks
gained from solving one task can transfer to the learning of other tasks from the same distribution. #757%
However, meta-learning methods usually also implicitly learn amortized inference strategies. I discuss this
in greater detail in Chapter 9, as well provide a more extensive discourse on the distinction between these

two kinds of learning in the Conclusion (Chapter 10).
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4.4 AMORTIZATION IN COGNITIVE SCIENCE

Here, I review how amortization has been an implicit part of many approaches to modeling human cog-
nition, focusing in particular on two domains: Inference and planning. Planning can be seen as a special
case of inference *3, but these have historically been studied as separate problems, with various approaches
to each developing independently. Seeing both of these historically distinct directions of research through
the common lens of amortization highlights the wide range of behaviors this principle of computational

re-use can unite, and also facilitates the exchange of ideas between the two.

4.4.1 AMORTIZATION IN INFERENCE

I first briefly reiterate the computational problem underlying Bayesian inference. In many real-world situ-
ations, people have to combine information from many sources, in order to make judgments about prob-
abilistic outcomes. As discussed in Chapter 2, Bayesian inference provides a normative computational
account of what should be done. The first step in Bayesian inference is acquiring the requisite potential
knowledge —i.e. to collect information from the world in order to inform ajoint distribution P(%, d). This
includes learning a prior distribution P(/) as well as a likelihood function P(d|4). We will assume that this
step is already complete. The second step, that we focused on in Chapter 3 is of going from the possible
to realized knowledge. Given data d, Bayes’ rule stipulates how a rational agent should update its prior
probabilistic beliefs P(%) about hypothesis %, to give normalized posterior probabilities P(%|d). In case
of many underlying hypotheses (as is often the case), this denominator is difficult and often intractable
to calculate. Therefore, despite having the requisite ‘possible > knowledge in the form of the generative
model P(h, d), achieving the ‘realized’ knowledge of the posterior probabilities remains a computational
challenge.

Amortization suggests that this computation be spread out over previously encountered queries. This

suggests that greater experience in a domain, or practice in the domain, will lead to faster inferences. This

166,322 412,282
b

has been found and studied extensively in the literature on practice and automatic processing
even after there is no new information to be gained by increased experience. As phrased by Logan 282,

“Automaticity is memory retrieval: Performance is automatic when it is based on single step
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direct-access retrieval of past solutions from memory. The theory assumes that novices begin
with a general algorithm that is sufficient to perform the task. As they gain experience, they
learn specific solutions to specific problems, which they retrieve when they encounter the

same problems again.”

Amortization formalizes this notion of flexible re-use of past computations, despite already having a
‘general algorithm sufficient to perform the task’. This allows faster, more automatic inferences with more
experience.

This results in a dependence on the history of queries observed, leading to another key prediction of
amortizing inference. If there is additional structure in this historical query set, we expect the development
of ecologically rational shortcuts that reflect this structure. If computations were being carried out from
scratch — computing realized knowledge from potential knowledge each time — there would be no differ-
ence in behavior between common and uncommon queries. However, shortcuts learned via amortization
might give close to optimal responses on commonly observed queries, but would give poor performance
on uncommon ones. The use of heuristic-based strategies has been observed in experts in various domains
such aslegal decisions 8 and medicine®?, where the most general, normative decision strategy involves sev-
eral variables and is often too complex for easy full consideration. Garcia-Retamero & Dhami ™ find, in a
domain of criminality and law enforcement, that expert behavior is better described by heuristic strategies,
while laypeople are better described by a full regression to the relevant variables. These provide prelimi-
nary evidence that these heuristic strategies are in fact learned from experience, and amortization provides
a mechanism for how these context-sensitive heuristics might arise. We discuss this adaptation to the eco-
logical distribution of queries in Chapters s, 6 and 7. We will also see how statistical structure in the query

distribution informs inference procedures learned in discriminative artificial systems in Chapters 8 and 9.

4.4.2  AMORTIZATION IN PLANNING

In this section, I briefly discuss the computational challenge of exact planning, and how amortization fits
into the framework of approximate planning. Discussing amortization in this additional domain allows
for a better understanding of the concept. I then discuss parallels to the main focus of this thesis i.e. amorti-

zation in inference, and possible applications of the developments in amortized planning to this problem.
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THE PLANNING PROBLEM

The goal of planning is also to leverage information one has about the world (realized knowledge) in order
to achieve a specific goal (potential knowledge), and the main challenge is in the computations that go from
potential to realized knowledge. This problem has been commonly studied in a Markov Decision Process
paradigm, in the context of Reinforcement Learning (RL). The framework here is that an agent has a fixed
set of actions (@ € A) it can perform on the world, in order to receive reward (7). This reward depends
on both the state of the world the agent is in (s € §) as well as the action taken, as defined by a reward
function 7 = R(s, a). The goal is to maximize this earned reward, over some fixed or discounted (by some
factor y < 1) time horizon. The effect of an action will depend on the state of the world the agent is in,
and can cause a transition from one state s to another state s’ as defined by a transition model P(s'|s, a). A
common assumption, that makes the problem more tractable, is that the transitions and reward structure
are Markov - i.e. that when taking action « in state s, which state we transition to as given by P(s'|s, a) as
well as the reward earned R(s, @) depend only on the current state and current action and is independent
of the history of any previous states or actions.

In a planning problem, the transition probabilities and reward functions are known. This consists of
all the potential knowledge about this domain. The challenge in converting this to realized knowledge is
to construct a policy w : S — A that determines what action to take at each state, in order to maximize
the reward earned. The number of possible trajectories through the Markov Decision Process is exponen-
tially large, and potentially infinite if there are cycles, and evaluating every possible policy — despite already
having all the potential knowledge in the domain - is computationally very challenging and often entirely
intractable.

Amortization of previous computations, to better inform a policy, is a common approach to easing the
burden of planning. The classic approach to this problem is to use dynamic programming or caching in
the form of Bellman back-ups, where the expected reward associated with a state s, under a fixed policy ©

is written as
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Ve(s) =r(s) +7 ) P(s|s, )V (s) (4.1)

s'esS

By writing the value of one state in terms of the value of another state, we can re-use the computations
that went into computing these other values. These values can be computed iteratively with updating the
policy, to find the optimal policy that maximizes reward using an algorithm called value-iteration.

In cases where we might have a very large number of possible states, learning a table of these values
becomes intractable. This includes most real-world problems which in fact often have continuous state
spaces. In these cases, we can learn a function that takes in properties of a state s and returns its value
V(s). This way, even if the table of values actually computed (with dynamic programming in a known
model) is sparse, and the values of other intermediate states are unknown, the function might be able to
pick out (possibly heuristic) structure in the mapping from state to value. If this mapping is accurate, the
function can generalize reasonably to new states without direct experience of that state. This is analogous
to our discussion of amortization in a variational framework where ‘similar’ queries can still benefit from
computational re-use.

So far, we have only considered amortization as a solution to planning in a model in which the model is
exactly known. However, in many cases, the model is either not known. This is the broader reinforcement
learning problem, where one must also obtain the relevant ‘potential knowledge’ in terms of reward and
transition structure, simultaneously with planning. Here as well there are two main approaches to this
problem. First, is model-based reinforcement learning. This is a generative approach where the model is
first learned and then the value function and resultant policy can be iteratively computed with planning,
as discussed previously. Second, is model-free reinforcement learning. This is a discriminative approach
where the value and/or policy are learned directly from experience with the environment via stochastic
rewards received in the environment. * Potential and realized knowledge are not encoded separately and are

simply learned end-to-end. A similar approach is often used to obtain not just state-specific values, but the

x‘Although we follow this convention for the rest of the section, we note here that calling this discriminative
method ‘model-free’ can be misleading. It can instead be characterized as learning a simpler model that maps states
directly to a value or to a policy. We expand on this interpretation in our discussion on simultaneous learning of
model and inference in Chapterro.
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value of state-action pairs in a process known as Q-learning #7°. Model-free methods are also often used in
cases where the model is known, but is too complex to perform effective planning on (even with help from
dynamic programming). Efficient algorithms for these model-free approaches to reinforcement learning,
paired with the generalization and representational capacity of deep neural networks, underlie many recent

successes in artificial intelligence®?, as well as underlies the artificial agent we analyze in Chapter 9.

STUDIES IN COGNITIVE SCIENCE

In cognitive science, amortized planning has largely been studied in the context of the larger reinforcement
learning problem. Therefore, rather than as amortization within a model-based framework, it has largely
been studied directly as model-free approaches to reinforcement learning. If we have the right model, and
infinite experience to learn model-free values, then exact planning in a model, and the learned model-free
values will correspond exactly. However, most studies of reinforcement learning and decision making in
natural intelligence distinguish these kinds of learning by leveraging the fact that model-free values are very
efficient once they have been learned but adapt very slowly to changes in reward structure and transition
probabilities, whereas model-based inference is equally expensive with a new or an old transition / reward
function”’. These are also distinguished based on the extent of cognitive effort required and available
at run-time, with the logic that model-free values are habitual and automatic, requiring less processing
than planning in a model**>*°. The neural realizations of these different learning systems have also been
studied extensively*>%2,

To better draw parallels to our discussion of amortization in inference, we consider a hybrid between
model-based and model-free systems, namely the DYNA architecture*##. Here, the model is learned and
stored i.e. all potential knowledge is explicitly acquired based on external experience. However, model-
free values are not learned solely from interaction with the environment, and are instead updated using
simulations in this model. Updating model-free values using a model is analogous to our discussion of
amortization in inference. The only computations being amortized are in going from potential to real-
ized knowledge — analogous to amortizing the cost of approximating Bayesian inference despite already

knowing the joint distribution. Evidence of DYNA-like behavior has also been found in humans™°.
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Other approaches to reinforcement learning also implicitly invoked amortization of planning. The suc-
cessor representation® is an ecologically rational adaptation to worlds in which the transition function
P(s'|s,a) does not often change, but the reward function R(s, a) does. This implicitly amortizes com-
putations by re-using past experience of transition probabilities, but remains flexible on reward structure.
Episodic approaches to reinforcement learning— where the computational challenge is to learn similarity
functions to previous experience, to facilitate adaptive re-use™" — can also be seen as amortization. Kera-
mati et al.  also suggests ways to cache computations within a model-based framework. Certain aspects of
planning can also be meta-learned (see the earlier section on meta-learning for details), thereby amortizing
some of its costs **. In fact we will see in Chapter 9, how amortized model-free methods in a meta-learning
framework can also lead to realizations of other more complex amortized inference procedures.

Amortized planning also has implications for the strategy selection problem discussed earlier in the
context of domain-specific, ecologically rational heuristics in Chapter 2. Choosing the right strategy has

often been framed as meta-cognitive reinforcement learning problem.°»%7*27°,

Here an agent operates
in a ‘meta-cognitive Markov Decision Process’” and decides how much information to gather, how much
cognitive energy to invest, and what inference strategies to use, with the ultimate goal of optimizing a
bounded rationality objective function that rewards good inferences and penalizes costs. Without further

assumptions, optimal planning in this Markov Decision Process remains intractable, and amortized plan-

ning methods developed in reinforcement learning suggest possible solutions.
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Ecologically rational constraints on sampling

Why are human inferences sometimes remarkably close to the Bayesian ideal and other times systemati-
cally biased? In this chapter, we focus on a specific, notable, instance of this discrepancy: in tasks where
the candidate hypotheses are explicitly available result in close to rational inference over the hypothesis
space, whereas tasks requiring the self-generation of hypotheses produce systematic deviations from ratio-
nal inference. We propose that these deviations arise from algorithmic processes approximating Bayes’ rule,
under ecological constraints.

In this account, hypotheses are generated stochastically from a sampling process, such that the sampled
hypotheses form a Markov chain Monte Carlo approximation of the true posterior. While this approx-
imation will converge to the true posterior in the limit of infinite samples, we take a small number of
samples as we expect that the number of samples humans take is limited by time pressure and cognitive
resource constraints. This implements a boundedly rational approach to probabilistic inference. More

explicitly ecological considerations enter our process model of approximate inference by initializing the
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chain at query-specific information acquired from the framing of the question. A random initialization in
a large hypothesis space gives slow convergence, and initializing at query-specific cue is likely ecologically
rational, since cues in the environment are often correlated with good responses to the queries they posit -
However, this initialization can lead to biased inferences in environments where the ecological rationality
of initializing at these environmental cues is manipulated.

Under these ecological constraints on a Markov chain Monte Carlo approximation algorithm for hy-
pothesis generation, our model recreates several well-documented experimental findings such as anchoring
and adjustment, subadditivity, superadditivity, the crowd within as well as the self-generation effect, the
weak evidence, and the dud alternative effects. Additionally, we confirm the model’s prediction that su-
peradditivity and subadditivity can be induced within the same paradigm by manipulating the unpacking
and typicality of hypotheses. Our model predicts higher biases when under cognitive load or time pres-
sure, since these reduce the amount of computation possible, which manifest in our model as a reduced
number of samples. We partially confirm our model’s prediction about these manipulations with novel
experiments. Our model also satisfies the requirements outlined in Section 3.4.2 such that the additional
value of computation can be locally approximated, suggesting a plausible mechanism for actively choosing

the optimal amount of computation.

5.1 HOW DO WE GENERATE HYPOTHESES?

In his preface to Astronomia Nova (1609), Johannes Kepler described how he struggled to find an accu-
rate mathematical description of planetary motion. Like most of his contemporaries, he started with the
hypothesis that planets move in perfect circles. This necessitated extraordinary labor to reconcile the equa-
tions of motion with his other assumptions, “because I had bound them to millstones (as it were) of cir-
cularity, under the spell of common opinion.” It was not the case that Kepler simply favored circles over

ellipses (which he ultimately accepted), since he considered several other alternatives prior to ellipses. Ke-

“In Chapter 7, we also discuss how ecologically rational anchors can be learned based on a priori knowledge of
the domain, in the absence of explicit cues from the environment to initialize at.
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pler’s problem was that he failed to generate the right hypothesis.”

Kepler is not alone: the history of science is replete with examples of “unconceived alternatives” #*#, and
many psychological biases can be traced to failures of hypothesis generation, as we discuss below. In this
paper, we focus on hypothesis generation in the extensively studied domain of probabilistic inference. The
generated hypothesis are a subset of a tremendously large space of possibilities. Our goal is to understand
how humans generate that subset.

In general, probabilistic inference is comprised of two steps: hypothesis generation and hypothesis eval-
uation, with feedback between these two processes. Given a complete set of hypotheses H and observed
data d, optimal evaluation is prescribed by Bayes’ rule, which assigns a posterior probability P(%|d) to each
hypothesis i € H proportional to its prior probability P(/) and the likelihood of the observed data under
h, P(d|h):

_ PRP®)
PO = S Pl PR 51

Many studies have found that when H is supplied explicitly, humans can come close to the Bayesian ideal
e.g. Griffiths & Tenenbaum ™™, Frank & Goodman'®, Petzschner et al.*”7, Oaksford & Chater #°."
However, when humans must generate the set of hypotheses themselves, they cannot generate them all
and instead generate only a subset, leading to judgment biases. 45573477552 Some prominent biases of
this kind are listed in Table 6.1.

Most previously proposed models of hypothesis generation rely on cued recall from memory based on

similarity to previously observed scenarios (c.f. Thomasetal. #4*, Gennaioli & Shleifer ). The probability

“In fact, Kepler had tried fitting an oval to his observations only to reject it, and then labored for another seven
years before finally trying an ellipse and realizing that it was mathematically equivalent to an oval. As he recounted,
“The truth of nature, which I had rejected and chased away, returned by stealth through the back door, disguising
itself to be accepted... Ah, what a foolish bird I have been!”

"This correspondence between human and Bayesian inference requires that the inference task must be one that
is likely to have been optimized by evolution (e.g., predicting the duration of everyday events, categorizing and locat-
ing objects in images, making causal inferences), typically in domains where people have strong intuitive knowledge
about the relative probabilities of hypotheses; asking humans to reason consciously about unnatural problems like
randomness or rare events see*” for discussion, or carry out explicit updating calculations??, tends to produce devia-
tions from the Bayesian ideal.
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Table 5.1: Biases in human hypothesis generation and evaluation.

Name

Description

Reference

Subadditivity

Superadditivity

Weak evidence effect

Dud alternative effect

Self-generation effect

Crowd within

Anchoring and Adjust-

ment

Perceived probability of a hypothesis is
higher when the hypothesis is described as
a disjunction of typical component
hypotheses (unpacked to typical

examples).

Perceived probability of a hypothesis is
lower when the hypothesis is described as a
disjunction of atypical component
hypotheses (unpacked to atypical

examples).

The probability of an outcome is judged to
be lower when positive evidence for a weak
cause is presented

The judged probability of a focal outcome
is higher when implausible alternatives are
presented

The probability judgment over hypotheses
that participants have generated
themselves is lower as compared to the
same hypotheses generated by others

The mean squared error of an estimate
with respect to the true value reduces with
the number of guesses. This reduction is
more pronounced when the guesses are
averaged across participants rather than
within participants.

Generated hypotheses are biased by the
hypothesis that is prompted at the start.

Fox & Tversky **

Sloman et al. %,
Hadjichristidis
etal.™

Fernbach et al. ™

Windschitl &

Chambers #

Koriat

etal. »*, Koehler >+

Vul & Pashler 4%

Tversky &

Kahneman 47
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of a generated hypothesis depends on the strength of its memory, and the number of such hypotheses gen-
erated is constrained by the available working memory resources. However, in most naturally encountered
combinatorial hypothesis spaces, the number of possible hypotheses is vast and only ever sparsely observed.

Goodman et al. '

showed that, when inferring Boolean concepts, people can generate previously unseen
hypotheses by using compositional rules, instead of likening the situation to previously observed situations.
So it seems that humans do not generate hypotheses only from the manageably small subset of previously
observed hypotheses in memory and instead are able to generate hypotheses from the formidably large
combinatorial space of all the conceivable possibilities. Given how large this space is, resource constraints
at the time of inference suggest that only a subset are actually generated.

In this paper, we develop a normative theoretical framework for hypothesis generation in the domain
of probabilistic inference, given fixed data, arguing that the brain copes with the intractability of inference
by stochastically sampling hypotheses from the combinatorial space of possibilities (see also Sanborn &
Chater*?). Although this sampling process is asymptotically exact, time pressure and cognitive resource
constraints limit the number of samples that can be generated, giving rise to systematic biases. Such biases
are “computationally rational” in the sense that they result from a trade-off between the costs and ben-
efits of computation—i.e., they are an emergent property of the expected utility calculus when costs of
computation are taken into account.#+4%7*’S We propose that the framing of a query leads to sampling
specific hypotheses first, which biases the rest of the hypothesis generation process through correlations in
the sampling process. This mechanism is potentially ecologically rational under the assumption that cues
in the environment are informative of the good and relevant hypotheses required in response to queries
in that environment. We discuss the properties of various sampler designs to explore the space of possible
algorithms, and choose a specific design that can reproduce all the phenomena listed in Table 6.1. We then

test our theory’s novel predictions in four experiments.

5.2 A RATIONAL PROCESS MODEL OF HYPOTHESIS GENERATION

Much of the recent work on probabilistic inference in human cognition has been deliberately agnostic

aboutits underlying mechanisms, in order to make claims specifically about the subjective probability mod-
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els people use in different domains.*® Because the posterior distribution P(%|d) is completely determined
by the joint distribution P(h,d) = P(d|h)P(h), an idealized reasoner’s inferences can be perfectly pre-
dicted given this joint distribution. By comparing different assumptions about the joint distribution (e.g.,
the choice of prior or likelihood) under these idealized conditions, researchers have attempted to adjudicate
between different models. Importantly, any algorithm that computes the exact posterior will yield iden-
tical predictions, which is what licenses agnosticism about mechanism. This method of abstraction is the

essence of the “computational level of analysis” %

, and is closely related to the competence/performance
distinction in linguistics and “as-if” explanations of choice behavior in economics.

The phenomena listed in Table 6.1 do not yield easily to a purely computational-level analysis, since dif-
ferent choices for the probabilistic model do not account for the systematic errors in approximating them.
For this reason, we turn to “rational process” models see™ for a review, which make explicit claims about
the mechanistic implementation of inference. Rational process models are designed to be approximations
of the idealized reasoner, but make distinctive predictions under resource constraints. In particular, we ex-
plore how sample-based approximations lead to particular cognitive biases in a large space of hypotheses,
when the number of samples is limited. With an infinite number of samples, different sampling algorithms
are indistinguishable as they all converge to the ideal response, but these algorithms display different be-

haviors at small sample sizes. We narrow the space of candidate sampling algorithms by studying these

behaviors and comparing their predictions to observed cognitive biases.

5.2.1 MONTE CARLO METHODS

We discuss Monte Carlo methods is detail in Chapter 3. Here we reiterate the basics. In their simplest form,

sample-based approximations also known as Monte Carlo approximations; 376 take the following form:

N
P(hId) = Pr(hld) = <> Tlhy = i), (52)
=1
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where [[-] = 1 when its argument is true (o otherwise) and 4, is a random hypothesis drawn from some
distribution Q,(h).” When Q,(h) = P(h|d), this approximation is unbiased, meaning E[Py(h|d)] =
P(h|d), and asymprotically exact, meaning limy_, o Py(h|d) = P(h|d).

In general, a bounded reasoner cannot directly sample from the posterior, because the normalizing con-
stant P(d) = )", P(h, d) requires the evaluation of the joint probabilities of each and every hypothesis
and is intractable when the hypothesis space is large. In fact, sampling from the exact posterior entails
solving exactly the problem which we wish to approximate. Nonetheless, it is still possible to construct
an asymptotically exact approximation by sampling from a Markov chain whose stationary distribution is
the posterior; this method is known as Markov chain Monte Carlo(MCMC). Before presenting a concrete
version of this method, we highlight several properties that make it suitable as a process model of hypoth-
esis generation. Some of these properties are shared with other sampling mechanisms, and others make
MCMC more uniquely amenable.

First, all Monte Carlo approximations including MCMC, are stochastic in the finite sample regime,

producing “posterior probability matching” +#»¢3¢:4¢7,

hypotheses are generated with frequencies pro-
portional to their posterior probabilities. Second, MCMC does not require knowledge of normalized
probabilities at any stage and relies solely on an ability to compare the relative probabilities of two hypothe-
ses. This is consistent with evidence that humans represent probabilities on a relative scale. #** While this
property is not true of all samplers, it is shared with a large class of sampling mechanisms based on impor-
tance sampling. Third, MCMC allows for feedback between the generation and evaluation processes. The
evaluated probability of already-generated hypotheses influences if and how many new hypotheses will
be generated, consistent with experimental observations.** Here the properties of MCMC diverge more
significantly from parallel sampling methods like importance sampling, where hypotheses are generated in-
dependently. Fourth, Markov chains (unlike parallel sampling mechanisms such as importance sampling)
generate autocorrelated samples. This is consistent with autocorrelation in hypothesis generation. 74693

Correlation between consecutive hypotheses that manifest as anchoring effects where judgments are biased

by the initial hypothesis; #7 are replicated by MCMC approximations that are transiently biased (during

“This approach is straightforwardly generalized to sets of hypotheses: Py(h € H|d) = 1 ZLV: Ak, € H,
where H C H.
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the“burn-in” period) by their initial hypothesis. *7»*77 This seems to hold also true for the way in which par-
ticipants update their internal models in causal learning tasks. 7 Finally, work in theoretical neuroscience
has shown how MCMC algorithms could be realized in cortical circuits. %3453

We will show how some of the biases in Table 6.1 can be replicated with samplers that have some subsets
of these properties. Importantly, we will also show how a particular MCMC sampler can capture all of the

biases in Table 6.1.

COMPUTATIONAL RATIONALITY OF SAMPLING

We have emphasized properties that emerge in the finite sample regime because people tend to only gen-
erate a small number of hypotheses. *4>7%5%477:9° Although this may seem to be manifestly sub-optimal,
it can be justified within a “computational rationality” or “resource-rational” framework. 4718144400 If
generating hypotheses is costly (in terms of time and cognitive resources), then the rational strategy is to
generate the minimum number of samples necessary to achieve a desired level of accuracy. This implies
that incentives or uncertainty should have systematic effects on hypothesis generation. For example, Ham-
rick et al.* showed that people generated more hypotheses when they were more uncertain. By the same
token, cognitive load ** or response time pressure" act as disincentives, reducing the number of generated
hypotheses. As discussed in Chapter 2 (in Section 2..2), this can lead to a problem of ‘turtles all the way
down’ where finding the optimal allocation of cognitive resources can in and of itself be computationally
intractable. However, we also discuss in Chapter 3 (in Section 3.4.2) that under certain conditions, it is
possible to tractably compute: sampling algorithm of the kind we use does fall into this category.

Despite our focus on the finite sample regime, it is also important to consider the asymptotic regime
in order to explain the cases where human inference comes close to the Bayesian ideal. Monte Carlo algo-
rithms are typically asymprotically exact; thus, they can accommodate unbiased inference when adequate
cognitive resources are available. We do not claim, however, that all biases in human inference arise from
adaptive allocation of cognitive resources. It seems likely that evolution has endowed the mind with some

156

hardwired heuristics in order to avoid the cost of adaptive resource allocation.”® In Chapter 7 we discuss

how such heuristics might be learned and adaptively chosen between.
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COMPARISON WITH PARTICLE FILTERING

A key feature of MCMC is that it produces hypotheses sequentially. As mentioned above, this gives it
properties that distinguish it from parallel sampling mechanisms like importance sampling—specifically,
the feedback between the generation and evaluation processes, and the autocorrelation of samples. It is
therefore useful to compare MCMC with particle filtering, another Monte Carlo algorithm that generates
hypotheses sequentially, and which has also been fruitfully applied to a number of domains in psychol-

ogy, such as multiple object tracking **°

, categorization®*, and change detection. *° In order to clarify the
distinction between the sequential nature of particle filtering and MCMC, we note that the sequential
structure of particle filtering is dictated by the sequential nature of the generative process. For example, in
multiple object tracking, the object positions are dynamic latent variables; particle filtering generates new
hypotheses about the positions after each new data point is observed. Particle filters can also be used for
inferring static parameters®, updating the Monte Carlo approximation as new data arrive. Note that in
this case the generative process is still inherently sequential. In contrast, MCMC always involves sequential
hypothesis generation, regardless of the structure of the generative process.

MCMC can also be used in conjunction with particle filters: the samples generated by the particle filter
can be “rejuvenated” by applying a Markov chain operator that preserves the target distribution. »##7 This
process prevents degeneracy (collapse of the Monte Carlo approximation onto a few samples), a common
problem in particle filtering. Here, the sequential nature of the Markov chain is relevant only locally to
each step of the particle filter, orthogonal to the sequential nature with which the particle filter processes

new data. In this paper, we focus on non-sequential generative models, with no online updating of data,

in order to retain clarity on this point.

5.2.2 A SPECIFIC MARKOV CHAIN MONTE CARLO ALGORITHM

The space of MCMC algorithms is vast7°, but for the purposes of modeling psychological phenomena
many of the algorithms generate indistinguishable predictions. Our goal in this section is to specify one
such algorithm, without making a strong claim that people adhere to it in every detail. We focus on quali-

tative features of the algorithm that align with aspects of human cognition. Nonetheless, we shall see that
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the algorithm makes accurate quantitative predictions about human probabilistic judgments.

The most well-known and widely-used version of MCMC is the Metropolis-Hastings algorithm. This
is described in greater detail in Chapter 3. Here, at step 7 in the Markov chain, new suggestions h are drawn
from a proposal distribution Q(/’|h,), where &, is the hypothesis at step n. This proposal is accepted or
rejected according to:

P[P P(H) Q(ha 1)
P(d|hn)P(h) Q(H'|hn) |-

P(hyy1 = H'|h,) = min |1, (5:3)

If the proposal is rejected, then the chain stays at the same hypothesis, 4,41 = h,. Although the pos-
terior cannot be directly evaluated, we assume it is known up to a normalizing constant, since P(h|d)
P(d|h)P(h). The acceptance function forces moves to higher probability hypotheses, while also stochas-
tically exploring lower probability hypotheses. This process repeats until N samples have been generated.
In the limit of large N, the amount of time the chain spends at a particular hypothesis is proportional to its
posterior probability. If N is not large enough, then the samples are affected by the initialization, leading
to biased estimates of the posterior probability. The unique members of the set of accepted samples con-
stitute the generated hypotheses, and the number of times they appear provides their judged probability.

We recap here two psychologically appealing properties of the algorithm mentioned in the previous
section. First, we see that it relies solely on being able to gauge relative probabilities and not on having
good estimates for any absolute probabilities. Second, the acceptance function engenders an interaction
between generation and evaluation by ensuring that if one is at a high probability hypothesis, proposals
are more likely to be rejected and therefore not generated”

The next step is to specify the proposal distribution. For simplicity, we assume that the proposal is

" A low acceptance rate only implies that proposals are lower probability than the current state of the Markov
chain, not that the current hypothesis necessarily has a high probability globally. There may always be higher prob-
ability hypotheses that the proposal distribution fails to propose. Conversely, a high acceptance rate does not nec-
essarily imply a poor current hypothesis. For example, if the proposal distribution is proportional to the posterior
distribution, then all proposals will be accepted.
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symmetric, Q(A'|h) = Q(h|h"). This reduces the acceptance function to:

(5-4)

P(hyy1 = H'|h,) = min [1, P(d|h/)P(h/)}

P(d|hy)P(hy)

We also assume that the proposal distribution is “local”: the proposal distribution preferentially pro-
poses hypotheses that are in some way “close” to the current one. This ensures that the hypothesis gener-
ated next is close to the current one with high probability. The alternative possibility is to instead have a
“global” proposal distribution - for example one that proposes the next hypothesis uniformly at random
from the space of all possible hypotheses, instead of favoring those closer to the current one.

MCMC algorithms always exhibit some autocorrelation as long as the acceptance ratio is less than one
(irrespective of the details of the proposal distribution), because the same state occurs consecutively when
a proposal is rejected. However, we are also interested in the next zew hypothesis that is generated, not
exact repetitions of the same hypothesis. A more nuanced notion of autocorrelation takes into account
the fact that sampled hypotheses can be “similar” (though not identical) when the proposal distribution is
centered on alocal neighborhood of the current hypothesis, as opposed to if the proposal is a “global” one.
This kind of locality in determining the next state given the current one, has been studied previously in the
context of traversing and searching semantic networks' and combinatorial spaces. #** This locality has been
shown to be optimal as a foraging strategy *" as well as consistent with human behavioral data. Since the
generation of hypotheses is largely analogous to a search through the combinatorial space of conceivable
possibilities, locality in the proposal distribution that moderates this search can be expected.

The question then is how we should define locality. This is relatively easy to answer in domains where
the inference is over a one-dimensional continuous latent variable like in Lieder et al. *73; for example, one
can use a normal distribution centered at the current hypothesis. For the discrete combinatorial hypothesis
spaces studied in this paper, we assume that there is some natural clustering of the hypotheses based on
the observations they tend to generate (their centroids). We use the Euclidean distance between centroids
as a measure of distance between clusters. In our simulations, we assume for simplicity that all hypotheses
within a cluster are equidistant and that all clusters are equidistant from each other. The proposal distri-

bution chooses hypotheses in the same cluster with a higher probability than those outside the cluster, but
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it treats all hypotheses within a cluster equiprobably. While this structure induces locality in the proposal
distribution, we are not making a strong claim about the nature or role of clustering in hypothesis gen-
eration. We speculate about more sophisticated proposal distributions in the section on limitations and
future extensions.

Finally, we need to specify how the chain is initialized. For cases where a hypothesis is presented ex-
plicitly or primed in the query, we assume that the chain starts at that hypotheses. If there are several
hypotheses (say 7 in number) that have been presented explicitly in the query, we assume that a different
chain starts from each of these hypotheses and runs for g steps each, giving a total of N samples. However,
in cases where no hypotheses are explicitly prompted, we assume that the initial hypothesis is drawn from
the prior over the hypotheses instead of initializing at a prompted example. This assumption is consistent
with evidence that hypotheses with high base rates are more likely to be generated. 77 In order to maximize
similarity to the corresponding “explicitly prompted” version of the question and keep the number of new
initializations the same, n such chains are run for & steps to give a total of N samples. There may also be
initialization schemes that mix explicit prompts and sampling from the prior—for example a prompt that
encourages sampling from a specific subset of the hypothesis space. We speculate about more sophisticated

initialization schemes in the section on limitations and future extensions.

53 MODEL SIMULATIONS OF HISTORICALLY OBSERVED EFFECTS

In this section we apply our model to a range of empirical phenomena, using a disease-symptom Bayesian
network as our running example. For each simulation, we run the Markov chain many times and average

the results, in order to emulate multiple participants in an experiment.

5.3.1 DIAGNOSTIC HYPOTHESES IN A DISEASE-SYMPTOM NETWORK

Our model is generally applicable to domains where the inference is carried out over a large space of possibil-
ities that is sparsely observed and thus requires one to generate previously unobserved possibilities. A data
set containing medical symptoms is a prototypical example of this problem: a patient could have any com-

bination of more than one disease and many such combinations will not have been encountered before by
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an individual clinician. This combinatorial structure makes medical diagnosis computationally difficult—
exact inference in a Bayesian network is known to be NP-hard °. To address this problem, approximate
probabilistic inference algorithms (including Monte Carlo methods) are now widely-established e.g. Shwe
& Cooper #'#, Jaakkola & Jordan *?, Heckerman **. It is therefore reasonable to conjecture that diagnos-
tic reasoning by humans could be captured by similar approximate inference algorithms. Suggestively, a

§365100,477, our

number of the judgment biases listed in Table 6.1 have been documented in clinical setting
goal is to investigate whether the MCMC model can reproduce these biases.

In the disease-symptom network, the observations are the presence or absence of symptoms and the
latent variables are the presence or absence of diseases (S possible symptoms and D possible diseases). The
diagnostic problem is to compute the posterior distribution over 2D binary vectors, where each vector

encodes the presence (hg = 1) or absence (hg = 0) of diseasesd = 1, ..., D. The diseases are connected

to the symptoms via a noisy-or likelihood, following Shwe et al. #:

’:]w

Plks=11h) =1—(1—&) [ [(1 —wa)", (s-5)

d=1

where ks = 1 when symptom s = 1,...,Sis present (o otherwise), ¢ € [0, 1] is a base probability of
observing a symptom, and wgs € [0, 1] is a parameter expressing the probability of observing symptom s
when only disease d is present. Intuitively, the noisy-or likelihood captures the idea that each disease has
an independent chance to produce a symptom.

As our goal is to use this set-up purely for illustrative purposes, we use a simplified fictitious disease-
symptom data set designed to resemble real-world contingencies (Table 5.2). We designated two distinct
clusters of four diseases each (gastrointestinal diseases and respiratory diseases); these two clusters have
largely disjoint sets of symptoms, and the symptoms within a cluster are largely overlapping. We allow any
combination of diseases to be present, making even this small number of diseases a fairly large space of 256

possible hypotheses.
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Table 5.2: Parameters used for noisy-or model.

Diseases
Symptoms )
lung resp. gastro-  stomach stomach food poi-
TB cold . . base
cancer flu enteritis cancer  flu soning
Prior 0.00I 0.05 O.I 0.2 O.I 0.05 0.15 0.2 1.0
cough 0.3 0.7 005 0.5 0.0 0.0 0.0 0.0 0.01
fever 0.0 01 0.5 0.3 0.0 0.0 0.1 0.2 0.01
chest pain 0.5 0.5 00 00 0.0 0.0 0.0 0.0 0.01
short breath 0.5 02 00 0.0 0. 0.0 0.0 0.0 0.01
nausea 0.0 0.0 02 01 0.5 0.1 0.5 0.7 0.01
fatigue 0.0 00 02 03 oI 0.05 0.2 0.4 0.01
bloating 0.0 00 00 0.0 0.3 0.05 0.1 0.5 0.01
abdom. pain  oc.0 0.0 0.0I 0.0 Oo.I 0.5 0.0 0.0 0.01

5.3.2 SUBADDITIVITY

As described above, a resource-rational algorithm will arrest computation after a small number of samples,
once accuracy is balanced against the cost of sampling*%”. This gives rise to subadditivity (see Table 6.1):
the probability of a disjunction (in “packed” form) is judged to be less than the probability of the same
disjunction presented explicitly as the union of its sub-hypotheses (in “unpacked” form)+°>", despite the
fact that mathematically these are equal. For example, the probability of a gastrointestinal disease is judged
to be less than the sum of the probabilities of each possible gastrointestinal disease.

Let us define a few terms here that we use in our simulations of these unpacking eftects. The space of
hypotheses that the disjunction refers to is called the focal space of the query. For example, when queried
about the probability of a gastrointestinal diseases, the focal space is the set of all hypotheses that include
at least one gastrointestinal disease. When unpacking this disjunction, we do not unpack to every single
member of the focal space. Instead, we unpack to a few examples and to a carch-all bypothesis that refers
to all other members of the focal space that were not explicitly unpacked. For example: “Food poisoning,
stomach cancer or any other gastrointestinal disease” where a few example components of the focal space

are unpacked and explicitly prompted in the question (food poisoning and stomach cancer) and presented
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Figure 5.1: Subadditivity. MCMC estimates were made for the following queries: Given the symptoms fever, nausea and
fatigue, (a) Packed: what is the probability that these symptoms were caused by the presence of a gastrointestinal disease?
(b) Unpacked to typical examples: what is the probability that these were caused by the presence of food poisoning, stomach
flu, or any other gastrointestinal diseases? The estimate for the unpacked condition is higher than that of the packed condition.
The difference between these estimates is represented by the red line. This effect diminishes as the number of samples
increases.

along with a catch-all hypothesis (any other gastrointestinal disease).”

Our model offers the following explanation of subadditivity: when a packed hypothesis is unpacked to
typical examples and a catch-all hypothesis, the typical examples (that are part of the focal space) are explic-
itly prompted, causing the Markov chain to start there and thus include them in the cache of generated
hypotheses. If the examples are not explicitly prompted and instead a packed hypothesis is presented, the
chain initializes with a random sample from the prior. The chain is thus likely to start from a fairly typi-
cal (high prior probability) hypothesis; however, with some probability it may fail to generate all the high

probability hypotheses. Deterministically initializing the chain at a typical (high probability) hypothesis,

“In this paper, we study what is termed “implicit” subadditivity, where the unpacked query is framed as a con-
junction of mutually exclusive sub-hypotheses, in contrast to “explicit” subadditivity, where each mutually exclusive
sub-hypothesis is queried separately and the numerical estimates from each query are then added together. Explicit
subadditivity could be modeled the same way as implicit subadditivity if we assume that the number of samples gen-
erated over the separately queried sub-hypotheses is equal to the net number of hypotheses generated in response to
the conjunction, and that no samples are carried over in between the separately queried hypotheses.
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ensures that the chain generates high probability hypotheses in the focal space and thus results in a larger
probability judgment for that focal space. This effect can also be replicated by a parallel sampling algo-
rithm as seen in Thomas et al. #4*. Here explicitly prompted hypotheses (under the unpacked condition)
are appended to the other samples that would have been generated without prompting (under the packed
condition), leading to more hypotheses in the focal space being generated in the unpacked condition and
therefore raising the probability estimate under that condition.

To illustrate this effect in our medical diagnosis model, consider the following queries:

* Packed query: Given the symptoms fever, nausea and fatigue, what is the probability that these

symptoms were caused by the presence of a gastrointestinal disease?

* Unpacked query (typical examples): Given the symptoms fever, nausea and fatigue, what is the
probability that these symptoms were caused by the presence of food poisoning, stomach flu, or

any other gastrointestinal diseases?

The difference between the probability estimates between these two conditions is shown in Figure s.1.

Experiments in Dougherty & Hunter* show that the effect size of subadditivity decreases as the par-
ticipants are given more time to answer the question. In our model, as more samples are taken, it becomes
more and more likely that the packed chain also finds the high probability examples prompted in the un-
packed scenario on its own. So the head-start given to the unpacked chain gets gradually washed out and
the effect size of subadditivity decreases. If we assume that as more time passes, people take more samples
(up until a resource-rational limit on the number of samples), and that the time-points measured are be-
fore the resource-rational sample limit is met, our model replicates these time-dependence effects as seen

in Figure s.1.

5.3.3 SUPERADDITIVITY AND RELATED EFFECTS

Taking a limited number of samples with an MCMC sampler can also give rise to an effect opposite to the
one described in the previous section, known as superadditivity (see Table 6.1): the probability of a dis-
junction (in “packed” form) is judged to be greater than the probability of the same disjunction presented

explicitly as the union of its sub-hypotheses (in “unpacked” form)**>™", despite the fact that mathemati-
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cally they should be equal. This effect occurs when unpacking to atypical (low probability) examples and
subadditvity prevails when unpacking to typical (high probability) examples.

The key feature that produces this effect is the acceptance function of the MCMC sampler and the feed-
back it causes between the generation and evaluation processes. If a chain is atalow probability hypothesis
(such as when a low probability hypothesis is explicitly prompted in the form of an atypical unpacking),
the chain is likely to accept more of the proposals made by the proposal distribution. Therefore, this chain
could generate many alternate hypotheses outside the focal space. In contrast, a chain at a higher probabil-
ity hypothesis (for example, if it was randomly initialized in the focal space instead of being initialized at a
particularly atypical example) will reject more of these proposals and remain at the initial hypothesis. So

most of these proposals will not be generated. The probability estimate for the focal space A is given by

N N
A Y ohed Doni Uhn = h
Phd .6
,;A D) ZA Z: e Tl = W+ g b Tk, = W] ¢)

Being in A or not divides the total hypothesis space of H into two mutually exclusive parts. Therefore,
the generation of more hypotheses outside the focal space (on average) when initialized at a consistently
low probability (atypical) hypothesis in the focal space lowers the resulting probability estimate of the focal
hypothesis space. This results in superadditive judgments.

To elucidate this effect in our medical diagnosis model, we use the following “unpacked to atypical ex-
amples” query: Given the symptoms fever, nauseaand fatigue, whatis the probability that these symptoms
were caused by the presence of gastroenteritis, stomach cancer, or any other gastrointestinal disease? The
difference between the probability estimates from the two conditions is shown in Figure s.2.

Previous accounts of subadditivity e.g. Thomasetal. 448 Neil Bearden & Wallsten 3*° cannot explain su-
peradditivity; any unpacked example only increases the probability judgment of the unpacked query with
respect to the packed query. This weakness of MINERVA-DM has been observed by Costello & Watts ©7
in the context of its failure to model binary complementarity—an effect which their noise-based analysis
can capture. However, their analysis still fails to completely capture superadditivity, as it constrains un-

packed judgments to be greater than (and, only for binary complements, equal to) the packed judgment,
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Figure 5.2: Superadditivity. MCMC-estimates were made for the following queries: Given the symptoms fever, nausea and
fatigue, (a) Packed: What is the probability that these symptoms were caused by the presence of gastrointestinal disease? (b)
Unpacked to atypical examples: What is the probability is that these symptoms were caused by the presence of gastroenteritis,
stomach cancer, or any other gastrointestinal disease? The estimate for the unpacked condition is lower than that of the packed
condition. The difference between these estimates is represented by the red line. This effect diminishes as the number of
samples increases.



never less than the packed judgment. Our modeling of this effect hinges on the fact that MCMC allows for
feedback between the generation and evaluation processes—the evaluated probability of already generated
hypotheses influences how many new hypotheses will be generated. This property is not shared by paral-
lel sampling algorithms. However, other samplers (besides MCMC algorithms) that exhibit correlated
sampling may exhibit similar behaviors see for example®.

Sloman etal. #* explain superadditivity by suggesting that atypical examples divert attention from more
typical examples and thus lower the probability estimate. But an explanation at the level of a rational
process model is, to our knowledge, lacking in the literature.

Some other cognitive effects can also be modeled by the same mechanism that gives rise to superaddi-
tivity. One example is the weak evidence effect: the perceived probability of an outcome is lowered by the
presence of evidence supporting a weak cause. Fernbach et al.™ explain this effect as follows: mention-
ing evidence in support of a specific weak cause drives people to focus disproportionately on it and thus
they fail to think about other good candidates in the focal space of possible causes. Our model replicates
this effect by initializing at the weak cause, or low-probability hypothesis, resulting in a lower probabil-
ity judgment of the focal space by the same mechanism as in the superadditivity effect. However, the
added evidence should normatively increase the probability of the cause it supports. Since the evidence is
weak, this increase is small and the cause still remains low probability. Therefore, the superadditivity effect
overwhelms this small increase in probability of the specific hypothesis and instead lowers the probability
estimate of the focal space overall. This causes the final judged probability to be lower than if the positive
evidence had not been presented and the chain was initialized randomly (on average at a higher probability
hypothesis than the presented weak one) in the focal space.

To elucidate this effect in our medical diagnosis model, we use the following query:

* Control: Given the symptoms fever, nausea and fatigne, what is the probability that these symp-

toms were caused by the presence of gastrointestinal disease?

* Evidence for a weak cause: Given the symptoms fever, nausea and fatigue, what is the probability
that these symptoms were caused by the presence of gastrointestinal disease, assuming the patient’s

grandmother was diagnosed with stomach cancer?

The increase in support of the weak cause (stomach cancer), by making available the presence of familial
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Figure 5.3: Weak evidence effect. MCMC estimates were made for the following queries: Given the symptoms fever, nausea
and fatigue, (a) Control: What is the probability that these symptoms were caused by the presence of gastrointestinal disease?
(b) Evidence for a weak cause: What is the probability that these symptoms were caused by the presence of gastrointestinal
disease, assuming the patient’s grandmother was diagnosed with stomach cancer? The increase in support of the weak cause
(stomach cancer) is modeled by increasing the prior probability of stomach cancer from 0.05 to 0.06. The estimate from the
weak evidence chain is lower than that from the control chain. The difference between these estimates is represented by the
red line. The effect diminishes as the number of samples increases.

history, is implemented in our model by increasing the prior probability of stomach cancer in this patient
from 0.05 t0 0.06 (see Table s5.2). While this small change is not expected to elicit a large difference in the
probability of gastrointestinal diseases between the two cases, it certainly does make it more (rather than
less) probable compared to the control. However, it also causes the chain to be initialized at the weak
hypothesis of stomach cancer by prompting it, resulting in the generation of more alternative hypotheses
outside the focal space and a lower probability judgment than in the first case (Figure 5.3).

Another such bias is the Dud alternative effect: presenting low probability (or “dud”) alternate hy-
potheses increases the perceived probability of the focal space of hypotheses ***. This can be viewed as the
superadditivity effect in the complement (alternate) hypothesis space. The queries being contrasted here
are initialized in the space complementary to the focal space—i.e., the space of alternatives. Initialization

at a low probability alternative when it is explicitly prompted in the question results in a superadditive
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judgment (i.e., a lower probability judgment) of the complement space. This lower probability estimate
for the complement space entails a higher probability estimate for the focal space. The assumption here is
that the same chain is used to gauge the probability of both binary complements, by grouping the gener-
ated hypotheses into being either inside or outside the focal space and calculating the net- probability of
each group. The framing simply alters the initialization of the chain. This assumption ensures that prob-
ability judgments over complementary spaces add up to one, in accordance with behavioral experiments
that demonstrate binary complementarity in human judgments #*°.
To elucidate this effect in our medical diagnosis model, we use the following queries:
* Control: Given the symptoms fever, nausea and fatigue, what is the probability that the patient has

arespiratory disease (as opposed to the symptoms being caused by the presence of a gastrointestinal

disease)?

* Dud alternative: Given the symptoms fever, nausea and fatigue, what is the probability that the
patient has a respiratory disease (as opposed to the symptoms being caused by the presence of gas-

troenteritis, stomach cancer, or any other gastrointestinal disease)?

We see in Figure 5.4 that the model predicts that the scenario with dud alternatives produces higher

482 4150 suggest that the mag-

probability judgments than the control. Findings in Windschitl & Chambers
nitude of this effect decreases with the amount of processing time given to participants. The model also
replicates this phenomenon, if we assume that more time means more samples, and that the time points
queried are before the resource-rational limit on the number of samples is reached.

Our model currently only captures cases of binary complementarity where it’s obvious to participants
that complementarity holds. If this complementarity is obvious, then they can use the same chain, and
if the complementarity isn’t obvious, then they use a new chain. If this new chain is not suggestively un-
packed, approximate binary complementarity should still hold. Itis an interesting challenge to understand

when humans might re-use the same chain and when they might use a new chain, and when they might

use some intermediate between the two. This is part of our ongoing research.
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Figure 5.4: Dud alternative effect. MCMC estimates were made for the following queries: Given the symptoms fever, nausea
and fatigue, (a) Control: What is the probability that the patient has a respiratory disease (as opposed to the symptoms being
caused by the presence of a gastrointestinal disease)?, (b) With dud alternatives: What is the probability that the patient has
a respiratory disease (as opposed to the symptoms being caused by the presence of gastroenteritis, stomach cancer, or any
other gastrointestinal disease)? The estimate from the control chain is higher than from the chain for which dud alternatives

are presented. The difference between these estimates is represented by the red line and the effect diminishes as the number
of samples increases
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Figure 5.5: Self-generation effect. MCMC estimates for the following query: Given the symptoms fever and fatigue, (a) Self-
generated: What are the two most likely respiratory diseases to have caused these symptoms? Estimate the probability that
these symptoms are caused by either of these two diseases. (b) Other-generated: What is the probability that these symptoms
were caused by the presence of a cold or respiratory flu (two most likely respiratory diseases to have caused these symptoms
returned by the first chain)? The estimate from the other-generated chain is higher than from the self-generated chain. The
difference between these estimates is represented by the red line and the effect decreases as the number of samples increases

5.3.4 SELF-GENERATION OF HYPOTHESES

In this section, we focus on the self-generation effect: the probability judgment of a set of hypothesis that
are generated and reported by a subject themselves is lower than when the same set of reported hypotheses
is presented to a new subject*#7*?. Our model provides the following explanation: Self-reported hypothe-
ses generated by a chain are the modes it discovers after having explored the space and having generated
several alternate hypotheses. However, in a situation where these high probability hypotheses are directly
presented, the chain starts at the mode and is likely to get stuck—i.e., not accept any of the proposals and
thus not generate them at all. This, in the small sample limit, results in the generation of fewer alternate
hypotheses. As in the previous section, fewer alternate hypotheses lead to a higher probability judgment.
We simulate an experiment analogous to the experiments in Koehler *#7 by querying the model as fol-

lows: Given the symptoms fever and fatigue, what are the two mostlikely respiratory disease to have caused
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these symptoms? To simulate the answer to this query, a randomly initialized “self-generated” chain is run
and the 2 hypotheses over which this chain returns the highest probabilities are returned. In this case, these
are a cold and respiratory flu. The net probability estimate of the generated hypotheses cold or respiratory
flu is tracked over time for the chain that generated them. A separate “other-generated” chain is queried as
follows: Given the symptoms fever and fatigue, What is the probability that these symptoms were caused
by the presence of a cold or respiratory flu? Thus, this chain is initialized at these high probability hypothe-
ses of cold and respiratory flu. The difference between the probability estimates from these two chains is
shown in Figure s.s.

While this effect has previously been understood in terms of the generation of alternatives*#7, a rational
process model specifying a mechanism for this differential generation of alternatives is novel. Our expla-
nation of this effect is also contingent upon a property unique to MCMC - the link between generation
and evaluation. In both self-generated and other-generated scenarios, the same hypothesis was generated,
but evaluated differently depending on how many alternatives were generated. An MCMC chain can “get
stuck” at a high probability hypothesis because most new proposals are rejected, resulting in fewer gener-

ated alternatives.

5.3.5 ANCHORING AND ADJUSTMENT

In a classic experiment, Tversky & Kahneman 7 had participants observe a roulette wheel that was pre-
determined to stop on either 10 or 6s. Participants subsequently had to guess the percentage of African
countries in the United Nations. Participants who saw the wheel stopping on 10 guessed lower values than
participants whose wheel stopped at 6s. This and other findings led Tversky & Kahneman #7 to hypoth-
esize the “anchoring and adjustment” heuristic, according to which people anchor on a salient reference
(even if it is irrelevant) and incrementally adjust away from the anchor towards the correct answer.

Lieder et al.?” showed that the anchoring and adjustment heuristic is a basic consequence of MCMC
algorithms, due to the inherentautocorrelation of samples. Consistent with this account, our model posits
that anchors, even when irrelevant, can serve to initialize the Markov chain. Locality guarantees that the

chain will adjust incrementally away from the initial state, though anchoring will occur more generally
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Figure 5.6: Anchoring and adjustment. The y axis represents the difference in the probabilities of respiratory flu and stomach
flu given the symptoms fever and fatigue as returned by two different chains that are initialized differently. The chains are
initialized in the two different clusters, at hypotheses other than the focal hypotheses of respiratory or stomach flu. Before
reaching convergence, the chain initialized in cluster 1 of respiratory diseases places higher probability on respiratory flu than
the chain initialized in cluster 2 of gastrointestinal diseases. The net difference between the two chains diminishes as the
number of samples increases.

as long as the rejection probability is non-zero. An MCMC algorithm with global proposals will capture
anchoring to some extent because of its non-zero rejection probability and resulting auto-correlation of
samples. However, without locality, estimates would not adjust incrementally away from the initial state.
In other words, any MCMC algorithm will over-represent the initial anchoring hypothesis in the small
sample limit, but only an MCMC algorithm with local proposals will also over-represent other hypotheses
close to the initial anchoring hypothesis.

We illustrate this effect in Figure 5.6 using MCMC with local proposals on the disease-symptom net-
work. The space of diseases in our example is clustered into respiratory and gastrointestinal diseases. The
given symptoms are fever and fatigne. Chains initialized in different clusters show an initial within-cluster
bias (i.e. notjust a bias towards the initial anchoring hypothesis, but also to other hypotheses in its cluster),

and this bias diminishes with the number of samples.
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5.3.6 'THE CROWD WITHIN

Error in estimates of numerical quantities decrease when the estimates are averaged across individuals, a
phenomenon known as the wisdom of crowds**. This is expected if the error in the estimate of one indi-
vidual is statistically independent from the error of the others, such that averaging removes the noise. Any
unbiased stochastic sampling algorithm replicates this result, because taking more samples gets one closer
to the asymptotic regime, where the estimates are exact and the error tends to zero.

This error analysis was extended by Vul & Pashler #% to the effects of averaging across multiple estimates
from a single individual. They found that averaging estimates reduced error—a phenomenon they named
the crowd within. However, they also found that this error reduction was less compared to the reduction
obtained by averaging across individuals. One explanation for this observation is that the error in the
estimates given by the same individual are not entirely independent. We propose that the dependence
between multiple estimates arises from an autocorrelated stochastic sampling algorithm like MCMC. This
effectis illustrated in Figure 5.7. We presented the following query to the model: Given symptoms are fever,
nausea and fatigue, what is the probability that these symptoms are caused by the presence of a respiratory
disease rather than a gastrointestinal disease? We ran several chains (N, = 24) initialized randomly in the
space of all possible diseases, with each run generating the same number of samples (Vg = 200). Each chain
is initialized at the last sample of the previous chain”, for another N steps and a new set of N, estimates
are obtained, corresponding to the second guesses of the N, individuals. This process is continued until
we have 7 estimates from each of the N, = 24 participants. The samples are then averaged either within
or across individuals (chains). We find results analogous to those in Vul & Pashler *° —the error of the
responses monotonically declines with the number of samples, and the error reduction is greater when
averaging across (compared to within) individuals.

Our MCMC model can replicate this effect because it generates auto-correlated samples. The lastsample

from one estimate is where the chain for the next estimate is initialized. As the sampling process is auto-

"We could also induce correlation between consecutive estimates by continuing the chain—i.e., carrying over
the estimates from the first guess to the second one, instead of re-initializing. However, if we continue the chain, the
second estimate is made with more samples and will always have a lower error on average than the first one. Vul &
Pashler #* find this to not be the case empirically.
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Figure 5.7: The crowd within. Errors in the MCMC estimates for the following query: Given the symptoms nausea and
shortness of breath, what is the probability that these were caused by the presence of a respiratory disease? The estimates
are averaged either over samples from the same individual (blue) or over samples from different individuals (red)
correlated, subsequent samples in the second chain (in the small sample size limit) are correlated to its initial
sample. Similarly, earlier samples from the first chain are correlated to its last sample. Because the samples
from the two chains are correlated via the common sample, the probability estimates they generated are
correlated as well. This auto-correlation exists irrespective of proposal distribution because of the non-zero

rejection probability, but is strengthened by locality in the proposals because this increases correlation.

5.3.7 SUMMARY OF SIMULATION RESULTS AND COMPARISON WITH IMPORTANCE SAMPLING

To highlight the distinctive predictions of MCMG, it is useful to compare it with other sampling algo-
rithms that have been explored in the psychological literature. Importance sampling also uses a proposal
distribution Q(%), but unlike MCMC it samples multiple hypotheses independently and in parallel. These

samples are then weighted to obtain an approximation of the posterior:
1 N
Py(hld) = N;H[hn = d}wn, (57)
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where w), is an “importance weight” for sample n computed according to:

N ()
" O(h)

(5-8)

Intuitively, the importance weight corrects for the fact that the importance sampler draws samples from
the wrong distribution. Shi et al. #** have shown how this algorithm can be used to simulate human per-
formance on a wide range of tasks. They also identified a correspondence between importance sampling
and exemplar models, which have been widely applied in psychology. In related work, Shi & Griffiths #*
demonstrated how importance sampling could be realized in a biologically plausible neural circuit see also?.

Some of the effects we have replicated in this work could also be captured by an importance sampling
algorithm with limited samples. Thomas et al. #4* have proposed a model, HyGene, that is similar in
spirit to an importance sampler with limited samples, with a memory driven proposal distribution that
selects the hypotheses to be generated. HyGene explains subadditivity in terms of a failure to retrieve all
the relevant hypotheses from memory due to stochastic noise in the retrieval process and limited working
memory capacity.

The self-generation effect can to some extent be reproduced by importance sampling because prompt-
ing a hypothesis causes it to be sampled an extra time. So the probability of the focal space will be slightly
larger if hypotheses in it are explicitly prompted (other-generated and presented to the participant) than
if it they are generated without prompting (self-generated). However, Experiment 2 in Koehler *#7 shows
that in a situation where all the alternatives are specified, prompting specific hypotheses (as in the other-
generated scenarios), does not result in a higher probability judgment than when these hypotheses are not
prompted (as in the self-generated scenarios). The MCMC algorithm captures this finding because in a
small hypothesis space, the Markov chain will visit all the hypotheses with the right frequency irrespective
of initialization. By contrast, the importance sampler predicts a higher probability for other-generated
hypotheses, contrary to the empirical finding.

This brings us to a key difference between importance sampling and MCMC: Importance sampling
generates all hypotheses in parallel—the generation of new hypotheses has no dependence on hypotheses

that have already been generated. Without this dependence, there is no interaction between the genera-
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tion and evaluation processes. MCMC captures this dependence by sequentially generating hypotheses.
Our model’s explanation of the self-generation effect, superadditivity, the weak evidence effect and the
dud alternative effect rests on this dependence. The Markov chain can get stuck (at least temporarily) by
rejecting proposals, thus generating fewer alternatives. If, on the other hand, the current hypothesis has
low probability, more alternatives are generated and the probability estimate of the focal space is reduced.

The importance sampler does not produce these effects, because its mechanism for generating new hy-
potheses is independent of the probability of the current one. If anything, prompting a hypothesis within
the focal space, no matter how atypical, causes it to be sampled, increasing the importance sampler’s esti-
mate for the probability of the focal space, contradicting superadditivity.

Another key difference between MCMC and importance sampling is that MCMC generates correlated
samples, whereas consecutive samples from an importance sampler are totally independent. This prevents
the importance sampler from reproducing the effects in Table 6.1 that rely on correlated sampling, such as
the anchoring effect and the crowd within.

Itis also valuable to contrast MCMC with anchoring and adjustment schemes that involve incremental
changes to a numerical estimate in the direction of the target value. Although MCMC produces autocorre-
lation of samples, it does not require changes to be incremental; MCMC allows the proposal distribution
to be non-local. In fact, substantial evidence suggests that some of these changes can be quite dramatic, as

in perceptual multistability ** and insight problem-solving +¥.

5-4 OVERVIEW OF EXPERIMENTS

We now turn to novel experimental tests of our theory. As discussed in the Introduction, the primary
impetus for considering rational process models based on approximate inference is that inference in many
real-world problems is computationally intractable. However, studying complex inference problems ex-
perimentally is challenging because it becomes harder to control participants’ knowledge about the gen-
erative model. In the case of medical diagnosis, we can rely on the extensive training of clinicians, but it
is unclear whether conclusions from these studies are generalizable to non-expert populations. Thus, for

our experiments we sought a more naturalistic inference problem.
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One domain in which humans have rich, quantifiable knowledge is scene perception and understanding.
Extensive research suggests that the visual system encodes information about natural scene statistics"*+*°.
Although these low-level scene statistics like the distribution of oriented edges are not consciously accessi-
ble, statistics at the level of objects, for example object co-occurrence statistics in natural scenes studied in
Greene 74, can be used to inform a generative model that can act as a proxy for one aspect of human scene
understanding. We can then leverage such models to test theories of hypothesis generation in this domain.

Specifically, Greene 7+ provides a database of natural scenes with hand-labeled objects. We fit the la-
tent Dirichlet allocation (LDA) model® to this dataset, allowing us to capture the distribution of co-
occurrences of different objects in terms of latent “topics” (distributions over objects). Each scene is mod-
eled as a probabilistic mixture of topics. The LDA model captures the fact that microwaves are likely to
co-occur with toasters, and cars are likely to co-occur with mailboxes. The marginal distribution of ob-
jects provides a natural empirical prior over objects. We do not fit any free parameters to the dataset; all
hyperparameters are set to the values described in Blei et al. .

For our purposes, the important point is that we can use our model to compute conditional probabili-
ties over hidden objects in a scene, given a set of observed objects. Formally, let 2 € H denote a hypothesis
about k hidden objects in a scene, among all such possible hypotheses H. Given a set of observed objects d,
the inference problem is to compute the conditional probability P(4 € H|d) that i is in some set H C H
(e.g., hypotheses in which atleast one of the hidden objects is an electrical appliance, or hypotheses in which
the name of at least one of the hidden objects starts with a particular letter). This conditional probability
can be approximated using MCMC in the hypothesis space.

In our experiments, we present participants with a set of observed objects, and ask them to estimate
the probability that the hidden objects belong to some subset of possible objects. By manipulating the
query, we attempt to alter the initialization of participants’ mental sampling algorithm, allowing us to
quantitatively test some of the predictions of our model.

Due to the relative complexity of this domain (compared to the simplified fictitious disease-symptom
domain we have used so far for illustrative purposes), we refrain from making claims about the structure of

proposal locality here and only test the predictions of our model that are immune to the choice of proposal
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distribution. Specifically, we focus on subadditivity and superadditivity.

5-S EXPERIMENT 1: MANIPULATING QUESTION FRAMING

Our first prediction is the occurrence of both superadditivity and subadditivity in the same domain. The
key factor is the typicality of the examples prompted by the unpacked query. We predict that if the query
prompts typical examples from the focal space, probability judgments of that focal space will be higher than
in the packed condition where no hypotheses are prompted (subadditivity). By contrast, if the question
prompts atypical examples from the focal space, probability judgments of that focal space will be lower
than in the packed condition where no hypotheses are prompted (superadditivity).

Using LDA as the probabilistic model, the data consist of visible objects in a scene, and the hypotheses
are hidden objects. The focal space of hypotheses is given by a query such as all objects starting with c’.
The focal space was unpacked into several either highly probable (typical) examples or highly improbable

(atypical) examples, as well as a catch-all hypothesis. In the packed condition, the focal space is queried

without any unpacked examples.

PARTICIPANTS

59 participants (26 females, mean age=3s.76, SD=11.63) were recruited via Amazon’s Mechanical Turk and

received $1 for their participation plus a performance-dependent bonus.

MATERIALS AND PROCEDURE

Participants were asked to imagine playing a game with a friend in which the friend specifies an object in a
scene that they cannot see themselves. The task is to estimate the probability of certain sets of other objects
in the same scene. For example, the friend could specify “pillow”. In the unpacked condition, participants
were then asked to estimate the conditional probability of a focal space presented as a few examples and a
catch-all hypothesis (e.g., “an armchair, an apple, an alarm clock or any other object starting with an A”).

In the packed condition, the query did not contain any examples.
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Table 5.3: Queries in Experiment 1. The letter determines the focal space (e.g., all objects beginning with A), conditioned on
the cue object. Typical and atypical unpackings are shown for each focal space.

Cucobject  Letter ~ Unpacked-typical Unpacked-atypical

Pillow A armchair, alarm clock, apple arch, airplane, artichokes

Rug B book, bouquet, bed bird, buftalo, bicycle

Table C chair, computer, curtain cannon, cOw, canoe

Telephone D display case, dresser, desk drinking fountain, dryer, dome

Computer E envelope,electrical outlet, end  eggplant, electric mixer, elevator
table door

Armchair F fireplace, filing cabinet, fan fire hydrant, fountain, fish tank

Stove L light, lemon, ladle leavers, ladder, lichen

Chair P painting, plant, printer porch, pie, platform

Bed R rug, remote control, radio railroad, recycling bins, rolling pin

Kettle S stove, shelves, soap suitcase, shoe, scanner

Sink T table, towel, toilet trumpet, toll gate, trunk

Lamp w window, wardrobe, wine rack  wheelbarrow, water fountain,

windmill

Each participant responded to one query for each of 9 different scenarios shown in Table 6.2, with 3

unpacked-atypical, 3 unpacked-typical, and 3 packed questions. We randomized the order of the scenarios

as well as the assignment of scenarios to condition for each participant.

On every trial, participants first saw the cue object, followed by a hypothesis (either packed, unpacked-

typical or unpacked-atypical). Participants had 20 seconds to estimate the probability of the hypothesis on
ascale from o (notatall likely) to 100 (certain). For every timely response per trial they gained an additional

reward of $o.1. A screenshot of the experiment is shown in Figure 6.4.

MODEL FITTING

Our model has two free parameters: the number of hidden objects in the scene (k) and the number of
samples (). These parameters were fit to the behavioral data from both Experiment 1 and Experiment 2
combined, using a coarse grid search to optimize the mean-squared error between the mean experimental

probability estimates and the probability estimates from the model. This estimate was used to generate
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Submit

Figure 5.8: Experimental setup. Participants were asked to estimate the conditional probability using a slider bar within a
20-second time limit.

confidence intervals. The value of k that best fit the data was k& = 6 with negligible uncertainty, and
the number of samples N = 230 with a 95% confidence interval [191,269]. This value of & is in the
same ballpark as values found for average number of uniquely labeled objects in natural scenes from data
collected in Greene7#. This value for N as the number of samples is higher than numbers found in some
previous work like Vul et al. 47 etc, but it is important to note that each unique hypothesis can appear
several times in the sample set. So even if the number of samples is larger than in previous studies, the
number of unique hypotheses is comparable.

The details of the proposal distribution could also influence the individual and relative magnitudes
of the observed subadditivity and superadditivity effects, and perhaps different parameters for N and k.
Instead of making strong assumptions about locality in this particular hypothesis space, we use a uniform

proposal distribution.
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RESULTS AND DISCUSSION

We compared the mean probability judgments for each condition (Figure 5.9). Consistent with our hy-
pothesis, we found subadditivity in the unpacked-typical condition, with significantly higher probabil-
ity estimates compared to the control condition [#(58) = 4.53,p < 0.01], and superadditivity in the
unpacked-atypical condition, with significantly lower probability estimates compared to the control con-

dition [#(58) = —4.97,p < 0.01]. This pattern of results was captured by our MCMC model.

Experiment 1
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Figure 5.9: Experiment 1 results. Mean probability estimates for each condition. Error bars represent the 95% confidence
interval of the mean. Red dots show estimates from the MCMC model with 230 samples, assuming 6 hidden objects in the
scene.

Our results confirm the prediction that subadditivity and superadditivity will occur within the same
paradigm, depending on the typicality of unpacking. A related result was reported by Sloman et al. 4%,
who found subadditivity only when the definition of the focal space was fuzzy and typical unpacking may
have led to the consideration of a larger focal space. We consider this study in more detail in the General

Discussion.
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5.6 EXPERIMENT 2: MANIPULATING THE CUE

In Experiment 1, we demonstrated that the typicality of unpacked examples has a powerful effect on biases
in probability estimation. In Experiment 2, we provide converging evidence by showing that different
biases can be induced for the same unpacked examples by changing the cue object.

Typicality depends on an interaction between the cue and the examples: in the presence of a road, a
crosswalk is typical and a coffee-maker is atypical, but the opposite is true in the presence of a sink. Our
model predicts that subadditivity will occur when unpacked examples are typical for a given cue object,

whereas superadditivity will occur when the same examples are atypical for a different cue object.

PARTICIPANTS

180 participants (84 females, mean age= 34.25, SD=11.16) were recruited via Amazon’s Mechanical Turk

web service and received $o.5 for their participation plus a performance-dependent bonus.

MATERIALS AND PROCEDURE

The experimental procedure was identical to Experiment 1, except for the choice of scenarios (Table 6.3).
Each participant responded to one unpacked-typical, one unpacked-atypical and one packed scenario in
random order.

Table 5.4: Queries in Experiment 2. The letter determines the focal space (e.g., all objects beginning with A), conditioned on

the cue object. Conditioned on cue object 1, unpacking 1 is predicted to cause subadditivity and unpacking 2 is predicted to
cause superadditivity. These predictions reverse for cue object 2.

Cucobjectr  Cueobject2  Letter Unpacking 1 Unpacking 2
Pillow Faucet B bed skirt, bedspread bucket, bread
Road Sink C cabin, crosswalk cup, coffee maker
Cabinet Road T toothpaste, tray terrace, tunnel

84



Experiment 2
l Cue object ' Cue object 2

100
S 15
& 1 1
S 50 .
< 1
(]
=
25
O.

Packed Unpacking 1 Unpacking 2
Condition

Figure 5.10: Experiment 2 results. Mean probability estimates for each condition. Error bars represent the 95% confidence
interval of the mean. Red dots show estimates from the MCMC model with 230 samples, assuming 6 hidden objects in the
scene. Unpacking 1 is typical for cue object 1 and atypical for cue object 2; unpacking 2 is typical for cue object 2 and atypical
for cue object 1.
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RESULTS AND DISCUSSION

As shown in Figure s.10, we observed a superadditivity effect: probability estimates were significantly
higherin the packed condition compared to the atypical unpacking for both cue object1 [#(165) = 3.31,p <
0.01] and cue object 2 [£(162) = 4.31,p < 0.01]. We did not observe a subadditivity effect for either cue
object1[¢(171) = 0.73,p > 0.05] or cue object 2 [#(168) = 0.08,p > 0.05]. Importantly, we found a
significant interaction between the cue-object and the unpacking of the objects [F(498,2) = 12.69,p <
0.001]. In particular, when conditioning on cue object 2, using “Unpacking 1” (see Table 6.3) leads to
significantly lower estimates than using “Unpacking 2” [#(251) = 2.52,p < 0.01]. Additionally, when
conditioning on cue object 1, using “Unpacking 2” produces significantly lower estimates than using “Un-
packing 175 [#(165) = —3.31,p < 0.001]. These results show that typicality of the unpackings and, by
proxy the sub- and super-additive effects, crucially depend on the conditioned cue object.

Our fitted model matches the experimental data well (r = 0.96, p < 0.001), only slightly underesti-
mating the superadditive effect with cue object 2 and unpacking 1. We can conclude from the fact that this
cue-dependent swap can be even partially carried out—for example, the superadditivity effect certainly
does get swapped—indicates that these effects are not modulated solely by the prior typicality or inherent
availability of the unpacked examples. The same unpacking thatinduces superadditivity in the presence of
one cue object, does not induce it in the presence of the second cue object. Furthermore, a new unpacking
can be chosen such that it induces superadditivity in the presence of the second cue object but not in the
presence of the first. These results support a sampling process that is modulated by the cue objects, i.e. the

observed data.

5.7 EXPERIMENT 3: THE EFFECT OF TIME PRESSURE

A key prediction of our model is that the strength of subadditivity and superadditivity will decrease with
the number of sampled hypotheses, as the chain approaches its stationary distribution. To test this predic-
tion, we repeated Experiment 1, but reduced the time limit and incentivized participants to respond more

quickly. We predicted that these changes would lead to stronger subadditivity and superadditivity effects.
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PARTICIPANTS

62 participants (34 females, mean age= 25.65, SD=12.36) were recruited via Amazon’s Mechanical Turk web

service and received $o.s for their participation plus a performance-dependent bonus.

MATERIALS AND PROCEDURE

Materials were the same as in Experiment 1. However, in this experiment participants had less time available
per trial (5 seconds) and were asked to respond as quickly as possible. Participants were paid a baseline
amount for their participation of $o.5. Additionally, they were incentivized to respond quickly: they could
gain more money the faster they responded on each trial (up to $o.1 per trial) and gained an additional $o.1

for every on time response per trial overall.

REsuLTs AND DiscussioN

The mean estimates for the different conditions are shown in Figure s.11. Replicating the results of Ex-
periment 1, the estimates for the unpacked-atypical condition were significantly lower than for the packed
condition [#(57) = —4.8183,p < 0.01], and the estimates for the unpacked-typical condition were sig-
nificantly higher than for the packed condition [¢(57) = 4.76,p < 0.01]. Our hypothesis generation
model fits the data well with parameter values K = 3 with negligible uncertainty and N = 170 with 95%
confidence interval [94, 246]. We see that the best fit number of samples is substantially lower than that
found in Experiment 1 (N = 230, with 95% confidence interval [191,269]). The number of hidden ob-
jects K is also lower. These parameter estimates are consistent with the idea that time pressure results in
fewer generated samples and fewer objects under consideration.

Next, we performed a median split based on the overall reaction times and thereby classified trials into
slow and fast trials. The slow and fast trials were separately fit using the same value of K from the overall
responses and adjusting N. We see that the data from the fast trials are better fit with a lower N (N = 150,
with 95% confidence interval [98,202]) than the slow trials (N = 190, with 95% confidence interval
[125,255]). The estimates for the slow trials have a high overlap with the estimates from Experiment 1

(N = 230, with 95% confidence interval [191,269]). However, the intervals for the fast response and
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Figure 5.11: Experiment 3 results. Mean probability estimates for each condition. Error bars represent the 95% confidence
interval of the mean. Red dots show estimates from the MCMC model with 170 samples, assuming 3 hidden objects in the
scene. Blue squares show means estimates of Experiment 1.

the one from Experiment 1 have a small overlap of ~ 10 steps. The results are shown in Figure 5.12. We
then performed an ANOVA, regressing the median time (fast or slow response), condition (packed, typ-
ically unpacked and atypically unpacked hypothesis) onto participants’ probability estimates, where re-
sponses were nested within participants. Condition was a significant predictor of participants’ responses
(*(1) = 157.8,p < 0.001). The time variable alone was not a significant predictor of participants’
responses (y>(1) = 3.9, p = 0.05). This is expected since the subadditivity and superadditivity effects
go in opposite directions. The interaction between time and condition was significant (y(1) = 37.03,
p < 0.01) indicating that the time variable influences the estimates depending on condition. Further as-
sessing this difference between the interactions again using a nested ANOVA showed that faster responses
produced greater subadditivity effect as compared to slow responses (£(248) = —2.1602, p < 0.05). The
difference in the superadditivity effect however was not significant (#(213) = 0.78, p = 0.4). Comparing
the sub- and superadditivity effects of Experiment 3 to the effects of Experiment 1, we found that they were

relatively similar overall (#(453) = —1.353,p > 0.1). However, comparing only the fast responses from
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Experiment 3 to the results of Experiment 1, we found an increased subadditivity effect (#(102) = —2.46,
p < 0.05) but a similar superadditivity effect (#(104) = —0.71, p = 0.48). This is in agreement with the

model fits.
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Figure 5.12: Experiment 3 results: response time analysis. Mean probability estimates for each condition divided into fast
and slow trials based on a median split of the response times. Error bars represent the 95% confidence interval of the mean.
Dots represent the model fits with model parameters K = 3, and N = 150 for the fast trials and N = 190 for slow trials.

5.8 EXPERIMENT 4 THE EFFECT OF COGNITIVE LOAD

In our final experiment, we explored the possibility that cognitive load will reduce the number of samples,
under the assumption that load consumes resources necessary for hypothesis generation. Therefore, we
repeated Experiment 1, but put participants under cognitive load while responding to the packed or un-
packed queries. We predicted that subadditivity and superadditivity effects should become stronger under
cognitive load. In addition, the effects should again depend on participants’ response time, such that faster

trials are expected to produce larger effects.

5.8.1 DPARTICIPANTS

69 participants (28 females, mean age= 32.17, SD=7.64) were recruited via Amazon’s Mechanical Turk web

service and received $o.s for their participation plus a bonus of $o.1 for every question they answered on
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time and $o.1 for every time they remembered whether or not an item shown after the question had a

appeared within a sequence before the target question correctly.

5.8.2 MATERIALS AND PROCEDURE

Materials were the same as in Experiment rand 3. Additionally, participants were put under cognitive load
while performing the probability estimation task. On each trial, participants again first saw the cue object.
Once they clicked “Next”, a sequence of three random digits appeared, each remaining on the screen for 1
second before disappearing after which the next digit appeared. Participants were asked to remember these
digits. Immediately afterwards, participants were asked to judge the probability of a hypothesis that could
be either packed or unpacked (same as in Experiment 1). They were then shown another digit and had to

indicate whether or not that digit had occurred within the sequence they had just been shown.
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Figure 5.13: Experiment 4 results. Mean probability estimates for each condition when participants are put under cognitive
load. Error bars represent the 95% confidence interval of the mean. Red dots show estimates from the MCMC model with 110
samples, assuming 2 hidden objects in the scene. Blue squares show means estimates of Experiment 1.
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5.8.3 REsULTS AND Discussion

The mean probability estimates for each condition are shown in Figure s.13. Again replicating Experi-
ment 1, the estimates for the unpacked-atypical condition were significantly lower than for the packed
condition [#(68) = —7.31,p < 0.01], and the estimates for the unpacked-typical condition were sig-
nificantly higher than for the packed condition [#(68) = 4.18,p < 0.01]. The model fits the data well
with parameter values K = 2 and N = 110 with 95% confidence interval of [74, 146]. We see again
that the best fit number of samples is substantially lower than that found in Experiment 1 (N = 230,
with 95% confidence interval [191,269]), with no overlap in the confidence intervals. The number of
hidden objects K is also lower. Additionally, the cognitive load manipulation increased the effect of su-
peradditivity (packed-atypical condition) as compared to Experiment1 [#(58) = 10.38,p < 0.001], but
was not significantly different from Experiment 1 for the subadditivity effect (packed-typical condition)

[¢(58) = —1.9,p > 0.05].

5.9 GENERAL DiscussioN

We have presented a rational process model of inference in complex hypothesis spaces. The main idea
is to recast hypothesis generation as a Markov chain stochastically traversing the hypothesis space, such
that hypotheses are visited with a long-run frequency proportional to their probability. Our simulations
demonstrated that this model reproduces many observed biases in human hypothesis generation. Finally,
we confirmed in four experiments the model’s prediction that subadditivity and superadditivity depend
critically on the typicality of unpacked examples and that the superadditivity effect increases under time
pressure and cognitive load.

Our work extends a line of research on using rational process models to understand cognitive biases.
Most prominently, Thomas et al. #4* have attempted in their HyGene model to explain a wide range of
hypothesis generation phenomena by assuming that Bayesian inference operates over a small subset of
hypotheses drawn from memory. We follow a similar line of reasoning, but depart in the assumption

that hypotheses may be generated de novo through stochastic exploration of the hypothesis space. This as-
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sumption is important for understanding how humans can generate hypotheses in complex combinatorial
spaces where it is impossible to store all relevant hypotheses in memory.

Prior studies suggest that—when averaged over long time periods or across individuals—probability
estimates converge roughly to the Bayesian ideal 7. Like other models based on Monte Carlo methods
e.g. Gershman et al. "7, Lieder et al. 777,75, Shi et al. #*°, our model predicts exact Bayesian inference in
the limit of large sample sizes. However, cognitively bounded agents are expected to be computationally
rational™**: sampling takes time and effort, and hence the optimal sampling strategy will tend to generate
relatively few hypotheses*%7.

Our model recreates several cognitive biases exhibited by humans: subadditivity, superadditivity, an-
choring and adjustment, weaker confidence in self-generated hypotheses, the crowd within, and the dud
alternative and weak evidence effects. While some of these biases have been accounted for by other mod-
els, ours is the first unified rational process account. Table 5.5 provides a systematic comparison of which
phenomena are accounted for by different models.

Our simulation results rest on two key features of the model, that are not captured by parallel sam-
pling algorithms. First, our model posits an interplay between generation and evaluation of hypotheses:
when a low probability hypothesis has been generated, the sampler is more likely to accept new proposals
compared to when a high probability hypothesis has been generated. This property of MCMC allows us
to understand superadditivity and related effects (such as the dud alternative and weak evidence effects),
where unpacking a query into low probability examples causes a reduction in the probability estimate for
the focal space. This feature also explains why participants give lower probability estimates to hypotheses
that are self-generated compared to those generated by others and presented to them. A shortcoming of
previous models based on importance sampling#'® or cued recall ##? is that the generation and the evalua-
tion processes are largely decoupled; the probabilities of the hypotheses already in the cache of generated
hypotheses do not affect whether or not new hypotheses are generated.

The second key property of our model is the autocorrelation of hypotheses in the Markov chain. This
autocorrelation arises from two sources: the non-zero rejection rate (which ensures that the chain some-

times stays at its current hypothesis for multiple time steps) and the locality of the proposal distribution
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(which ensures that proposed hypotheses are in the vicinity of the previously generated hypothesis). Pre-
vious models based on importance sampling or cued recall generate new candidate hypotheses indepen-
dently of the hypotheses that have already been generated (i.c., the previously generated hypotheses have
no impact on future hypotheses). Lieder et al.?”* argued that autocorrelation and locality of proposals
in MCMC models can account for the anchoring and adjustment phenomena. They analyzed a one-
dimensional continuous hypothesis space for numerical estimation, and we generalized this idea to combi-
natorial spaces. More broadly, several findings in the literature suggest hypothesis autocorrelation 74693,
For example, the “crowd within” phenomenon 469 which we also simulate, demonstrates that errors in
numerical guesses are correlated in time, and this error is reduced if the guesses are spread out.

MCMC models with global proposal distributions will show much weaker autocorrelation compared
to those with local proposal distributions, because any autocorrelation will depend entirely on rejection
of proposals. Since efficient samplers have relatively low rejection rates 7%, there is reason to believe that
human probability estimation makes uses of local proposal distributions. Evidence for locality has been
found in domains analogous to that of hypothesis generation »#**, further suggesting that humans use local
proposal distributions. We discuss in Chapters 3 and 7, how variational approximations can be leveraged

to provide these adaptive proposal distributions.

Table 5.5: Comparison of stochastic sampling algorithms

Effect Stochastic Sampling Variants
Importance Global proposal ~ Local proposal
Sampling MCMC MCMC
Subadditivity v v v
Superadditivity v v
Weak Evidence effect v v
Dud Alternative effect v v
Self-generation effect r v v
Crowd within v v
Anchoring & adjustment v

“While an importance sampler does reproduce the dud alternative effect, we have elaborated in the section com-
paring our MCMC model to importance sampling how its explanation does not extend to follow-up studies on this
effect47.
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Figure 5.14: The effect size of subadditivity and superadditivity (calculated as the absolute difference between unpacked
judgments and packed judgments, averaged over 200 chains) decays with increase in the number of samples taken. We plot

this for K = 3 but this structure is maintained at all K. This plot shows that superadditivity decays faster than subadditivity
with increase in the number of samples, and that subadditivity decays to close to zero with a smaller number of samples.

Previous work demonstrating the effect of superadditivity > did not find subadditivity except in situ-
ations where the search was over an ill-defined fuzzy category, such that unpacked typical examples lead
participants to consider a larger hypothesis space than entailed by the packed query. However, this effect
was driven by a single item: Guns that you buy at a hardware store with staple gun as the unpacked typical
example. Excluding this item, typical unpackings were not subadditive. Our experiments demonstrated
that subadditivity can be obtained in well-defined (non-fuzzy) domains like “words starting with the let-
ter A”, and where typical unpackings do not extend the hypothesis space. A possible explanation for this
discrepancy is that, unlike the studies in Sloman et al. #*, we impose a response deadline on participants.
The size of the subadditivity and superadditivity effects decay with the number of hypothesis sampled.
Subadditivity decays to almost zero with fewer samples than superadditivity as seen for the scene statistics
model in Figure 5.14. The time pressure in Experiment 1, by restricting the number of samples, may have
rendered subadditivity observable, whereas the superadditivity effect is observable in both. Time pressure

in Experiment 3 and cognitive load in Experiment 4 strengthened some of the effects, but did not consis-
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tently strengthen both effects. Thus, more experimental work is needed to understand the role of time
pressure and cognitive load.

Our results cannot be explained by simpler heuristics like anchoring and adjustment. Although an-
choring to a low probability hypothesis can account for superadditivity (probability estimates are adjusted
upwards), anchoring to a high probability example does not explain subadditivity, since the high probabil-
ity hypothesis still has lower probability than the total probability of the focal space (e.g., the probability
of “chair” is lower than the probability of seeing any object starting with the letter “c”). Thus, adjust-
ment away from the low probability hypothesis towards the normatively correct probability cannot lead
to a probability estimate higher than the answer to the packed query (where presumably no anchoring
occurs).

Other effects like the conservatism bias could also potentially be captured by variants of our model.

Conservatism bias has previously been modeled using noisy retrieval of memories 89,288

and can be repro-
duced in our model in the same spirit by allowing noisy initialization. Due to the discreteness and resulting
low resolution of probability estimates allowed by a limited number of samples, even a few initial samples
from the focal space might over-represent its probability. When queried focal space has low probability,
the chain isinitialized there and the few initial hypothesis generated from the focal space could give it higher
probability than the true posterior. When the queried focal space instead has high probability, it will be
under-represented (as predicted by conservatism) if there are more samples from its complement space. If
we introduce noise that causes the chain to initialize in the complement space with some small probability,
this will produce a higher probability for the complement space and thus a lower probability for the focal

space—i.e., conservatism. That said, the addition of noise might interfere with our explanations of other

probability judgment biases, so further modeling work is needed to explore this hypothesis.

5.9.1 LIMITATIONS AND FUTURE EXTENSIONS

Our model can be improved in several ways. First, we adopted relatively simple assumptions about ini-
tialization of the Markov chain. Recent work suggests that humans might use a fast, data-driven proposal

distribution learned from previous experience 485143 We present a proposal mechanism of this sortin Chap-
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ter 7. This mechanism might capture effects that hinge on the availability and representativeness heuristics.
Our current model fails to replicate these effects because it assumes that all hypotheses are equally likely to
be proposed, although they are accepted proportional to their probability. A proposal distribution that
preferentially proposes certain hypotheses might help build a link between our stochastic sampling-based
method and the literature on heuristics. We pursue this direction in greater detail in Chapter 7.

Our experiments and simulations only studied two domains (medical diagnosis and scene understand-
ing), but there exist many real-world domains that impose a severe computational burden on mental infer-
ence. Itis important again to point out here that we expect our model to work only in domains in which
humans have natural intuitions for relative probabilities of hypotheses, without requiring explicit calcu-
lation. For example, it has been shown that humans are capable of simulating physical trajectories that
they have never directly observed, making fairly accurate inferences when predicting the motion of a pro-
jectile*#, judging mass in collisions**, and judging the balance of block towers™. Furthermore, research
also suggests that humans sample noisy simulations of future trajectories #*>'*4, but the precise sampling
mechanisms are currently unknown. The number of possible trajectories is exponentially large in this
domain, and thus approximate inference schemes like MCMC may come into play.

Returning to the puzzle we started with, why is it that humans are sometimes so successful at proba-
bilistic inference, and at other times so unsuccessful? We have identified one common source of inferential
fallacies: computational constraints on hypothesis generation, modulated by ecologically rational initial-
ization. Although this account can explain many departures from rationality, it remains puzzling why
humans should fail at tasks where the hypothesis space is clearly and exhaustively enumerated—for exam-
ple, in tasks that involve inferences about balls in urns see** for a review. A direct comparison between to
these to the domains we used in our studies is challenging because scene knowledge is complex and high-
dimensional (precisely why we were interested in this domain to begin with). In Chapter 7, we return to

tasks where the hypothesis space is small and explicitly provided, and discuss biases in these domains.
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Amortization in a sampling framework

Bayesian models of cognition assume that people compute probability distributions over hypotheses. How-
ever, the required computations are frequently intractable or prohibitively expensive. In the previous chap-
ter, I discussed how these computations might be approximated by sampling algorithms under ecological
constraints. This model replicates several cognitive biases observed in human inferences. However, since
people often encounter many closely related distributions, selective reuse of computations (amortized in-
ference) is also ecologically rational: it leverages structure in the distribution of queries, to make efficient
use of the brain’s limited resources. In this chapter, I extend the sampling framework introduced in Chap-
ter 5 to include how amortization in such a model might take place.

I demonstrate in 3 experiments that humans adaptively and flexibly re-use computations in probabilistic
reasoning. When sequentially answering two related queries about natural scenes, participants’ responses
to the second query systematically depend on the structure of the first query. This influence is sensitive to

the content of the queries, only appearing when the queries are related. Using a cognitive load manipula-
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tion, I show evidence that people amortize summary statistics of previous inferences, rather than storing
the entire distribution. These findings support the view that the brain trades off accuracy and compu-
tational cost, and utilizes structure in sequences of queries observed, to make efficient use of its limited

cognitive resources to approximate probabilistic inference.

6.1 AMORTIZED HYPOTHESIS GENERATION

Many theories of probabilistic reasoning assume that human brains are equipped with a general-purpose
inference engine that can be used to answer arbitrary queries for a wide variety of probabilistic models™+%".
For example, given a joint distribution over objects in a scene, the inference engine can be queried with

arbitrary conditional distributions, such as:

* What is the probability of a microwave given that I've observed a sink?
* What is the probability of a toaster given that I've observed a sink and a microwave?

* What is the probability of a toaster and a microwave given that I’ve observed a sink?

The flexibility and power of such a general-purpose inference engine trades off against its computational
efficiency: by treating each query distribution independently, an inference engine forgoes the opportunity
to reuse computations across queries, thus reducing time complexity (but possibly increasing space com-
plexity). Every time a distribution is queried, past computations are ignored and answers are produced
anew—the inference engine is memoryless, a property that makes it statistically accurate but inefficient in
environments with overlapping queries.

Continuing the scene inference example, answering the third query should be easily computable once

the first two queries have been computed. Mathematically, the answer can be expressed as:

P(toaster A microwave|sink) = P(toaster|sink, microwave ) P(microwave|sink). (6.1)

Even though this is a trivial example, standard inference engines do not exploit these kinds of regularities

because they are memoryless—they have no access to traces of past computations.
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An inference engine may gain efficiency by incurring some amount of bias due to reuse of past compu-
tations — a strategy we will refer to as amortized inference**>'**. This idea is expanded upon in Chapter
4. For example, if the inference engine stores its answers to the “toaster” and “microwave” queries, then
it can efficiently compute the answer to the “toaster or microwave” query without rerunning inference
from scratch. More generally, the posterior can be approximated as a parametrized function, or recogni-
tion model, that maps data in a bottom-up fashion to a distribution over hypotheses, with the parameters
trained to minimize the divergence between the approximate and true posterior.” By sharing the same
recognition model across multiple queries, the recognition model can support rapid inference, but is sus-
ceptible to “interference” across different queries, a property that we explore below.

One way to construct a recognition model is using Monte Carlo sampling: the recognition model can be
viewed as a kind of data-driven sampler whose parameters are optimized so that the samples resemble the
true posterior. In an amortized architecture, these parameters are shared across different inputs (i.e., data)
and hence the samples will be correlated, introducing a systematic bias. If the sampling process corresponds
to a Markov chain Monte Carlo algorithm (see below), this bias will disappear with a sufficiently large

468

number of samples, but since humans appear to take a relatively small number of samples’7>*°®, we expect
ples, pp y p > p

this bias to be measurable.

Amortization has a long history in machine learning; the locus classicus is the Helmholtz machine 82,212
which uses samples from the generative model to train a recognition model. More recent extensions and
applications of this approach?%34:24»¥73 have ushered in a new era of scalable Bayesian computation in
machine learning. We propose that amortization is also employed by the brain (see Yildirim et al. *® for a
related proposal), flexibly reusing past inferences in order to efficiently answer new but related queries. The
key behavioral prediction of amortized inference is that people will show correlations in their judgments

across related queries.

We report 3 experiments that test this prediction using a variant of the probabilistic reasoning task pre-

*Formally, this is known as variational inference®®, where the divergence is typically the Kullback-Leibler diver-
gence between the approximate and true posterior. Although this divergence cannot be minimized directly (since
it requires knowledge of the true posterior), a bound (variational free energy) can be tractably optimized for some
classes of approximations.
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viously studied by Dasgupta et al. 7 (Chapter 2?). In this task, participants answer queries about objects in
scenes, much like in the examples given above. Crucially, the hypothesis space is combinatorial because par-
ticipants have to answer questions about sets of objects (e.g., “All objects starting with the letter S”). This
renders exact inference intractable: the hypothesis space cannot be efficiently enumerated. In our previ-
ous work”?, we argued that people approximate inference in this domain using a form of Monte Carlo
sampling. Although this algorithm is asymptotically exact, only a small number of samples can be gen-
erated due to cognitive limitations, thereby revealing systematic cognitive biases such as anchoring and
adjustment, subadditivity, and superadditivity 277,275,468

We show that the same algorithm can be generalized to reuse inferential computations in a manner con-
sistent with human behavior. First we describe how amortization might be used by the mind. We consider
two crucial questions about how this might be implemented: what parts of previous calculations do peo-
ple reuse —all previous memories or summaries of the calculations— and when do they choose to reuse
their amortized calculations. Next we test these questions empirically. In Experiment 1, we demonstrate
that people do use amortization by showing that there is a lingering influence of one query on participants’
answers to a second, related query. In Experiment 2, we explore what is reused, and find that people use
summary statistics of their previously generated hypotheses, rather than the hypotheses themselves. Fi-
nally, in Experiment 3, we show that people are more likely to reuse previous computations when those

computations are most likely to be relevant: when a second cue is similar to a previously evaluated one.

6.2 THEORETICAL FRAMEWORK

Before describing the experiments, we provide an overview of our theoretical framework. First, we describe
how Monte Carlo sampling can be used to approximate Bayesian inference, and summarize the psycholog-
ical evidence for such an approximation. We then introduce amortized inference as a generalization of this

framework.
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6.21 MONTE CARLO SAMPLING

Bayes’ rule stipulates that the posterior distribution is obtained as a normalized product of the likelihood
P(d|h) and the prior P(h):
P(d|h)P(h)

PN = 5 P P (€

where H is the hypothesis space. Unfortunately, Bayes’ rule is computationally intractable for all but the
smallest hypothesis spaces, because the denominator requires summing over all possible hypotheses. This
intractability is especially prevalent in combinatorial space, where hypothesis spaces are exponentially large.
In the scene inference example, H = H1 X Hy X - - - H is the product space of latent objects, so if there
are K latent objects and M possible objects, |H| = MX. If we imagine there are M = 1000 kinds of objects,
then it only takes K = 26 latent objects for the number of hypotheses to exceed the number of atoms in
the universe.

Monte Carlo methods approximate probability distributions with samples @ = {h;, ..., hy} from the
posterior distribution over the hypothesis space. We can understand Monte Carlo methods as producing
a recognition model Qy(h|d) parametrized by 0%*. In the idealized case, each hypothesis is sampled from

P(h|d). The approximation is then given by:
P(hld) ~ Qp(hld) = § Yo Tlha = h], (63)

where I[-] = 1 if its argument is true (and o otherwise). The accuracy of this approximation improves
with N, but from a decision-theoretic perspective even small N may be serviceable +°%27545,

The key challenge in applying Monte Carlo methods is that generally we do not have access to samples
from the posterior. Most practical methods are based on sampling from a more convenient distribution,
weighting or selecting the samples in a way that preserves the asymptotic correctness of the approxima-
tion**%. We focus on Markov chain Monte Carlo (MCMC) methods, the most widely used class of approx-

imations, which are based on simulating a Markov chain whose stationary distribution is the posterior. In
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other words, if one samples from the Markov chain for long enough, eventually / will be sampled with
frequency proportional to its posterior probability.

A number of findings suggest that MCMC is a psychologically plausible inference algorithm. First,
MCMC does not require knowledge of normalized probabilities at any stage and relies solely on an ability
to compare the relative probabilities of two hypotheses. This is consistent with evidence that humans rep-
resent probabilities on a relative scale **°. Second, MCMC allows for feedback between the generation and
evaluation processes. The evaluated probability of already-generated hypotheses influences if and how
many new hypotheses will be generated, consistent with experimental observations'®. Finally, Markov
chains also generate autocorrelated samples. This is consistent with autocorrelation in hypothesis genera-
tion 39:148:469,275

Many implementations use a form of local stochastic search, proposing and then accepting or rejecting
hypotheses. For example, the classic Metropolis-Hastings algorithm first samples a new hypothesis A from
a proposal distribution ¢(#’|h,) and then accepts this proposal with probability

P(d|h)P(h) p(hn|H')

Phn :h/ hn — s 1’ .
Ut = Hlha) = min \ 1, B B ) o ()

(6.4)

Intuitively, this Markov chain will tend to move from lower to higher probability hypotheses, but will
also sometimes “explore” low probability hypotheses. In order to ensure that a relatively high propor-
tion of proposals are accepted, ¢(#’|h,) is usually constructed to sample proposals from a local region
around /,,. This combination of locality and stochasticity leads to a characteristic pattern of small inferen-
tial steps punctuated by occasional leaps, much like the processes of conceptual discovery in childhood 462
and creative insight in adulthood ##*. Even low-level visual phenomena like perceptual multistability can
be described in these terms ™3¢,

Another implication of MCMC, under the assumption that a small number of hypotheses are sampled,
is that inferences will tend to show anchoring effects (i.c., a systematic bias towards the initial hypotheses
in the Markov chain). Lieder and colleagues have shown how this idea can account for a wide variety of

anchoring effects observed in human cognition®>?”7. For example, priming someone with an arbitrary

number (e.g., the last 4 digits of their social security number) will bias a subsequent judgment (e.g., about
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Table 6.1: Unpacking induced biases in human hypothesis generation and evaluation.

Name Description References

Subadditivity Perceived probability of a hypothesis is Fox & Tversky ™, Tver-
higher when the hypothesis is described as  sky & Koehler *°
a disjunction of typical component
hypotheses (unpacked to typical
examples).
P(Aypica UB) < P(Aypicar) + P(B)

Superadditivity Perceived probability of a hypothesis is Sloman et al.#**, Had-
lower when the hypothesis is described asa  jichristidis et al. **
disjunction of atypical component
hypotheses (unpacked to atypical
examples).

P(Aatypical U B) > P(Aatypical> + P<B>

the birth date of Gandhi), because the arbitrary number influences the initialization of the Markov chain.

In previous research”?, we have shown that MCMC can account for many other probabilistic reason-
ing “fallacies,” suggesting that they arise not from a fundamental misunderstanding of probability, but
rather from the inevitable need to approximate inference with limited cognitive resources. We explored
this idea using the scene inference task introduced in the previous section. The task facing subjects in our
experiments was to judge the probability of a particular set of latent objects (the hypothesis, ) in a scene
conditional on observing one object (the cue, d). By manipulating the framing of the query, we showed
that subjects gave different answers to formally equivalent queries (see Table 6.1). In particular, by par-
tially unpacking the queried object set (where fully unpacking an object set means to present it explicitly as
aunion of each of its member objects) into a small set of exemplars and a “catch-all” hypothesis (e.g., “what
is the probability that there is a chair, a computer, or any other object beginning with C?”), we found that
subjects judged the probability to be higher when the unpacked exemplars were typical (a “subadditivity”
effect; cf. Tversky & Koehler #°°) and lower when the unpacked exemplars were atypical (a “superadditiv-
ity” effect; cf. Sloman et al. #*°) compared to when the query was presented without any unpacking.

To provide a concrete example, in the presence of the cue “table,” the typically unpacked query “what
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All objects All objects starting with “C” Toothbrush Toothbrush

Chair (Typical - subadditivity) Canoe (Atypical - superadditivity) Chair (Typical - subadditivity) Canoe (Atypical - superadditivity)
Samples = {chair} Samples = {canoe} Samples = {chair,?} Samples = {canoe,?}
(a) Different initializations (b) The same proposal made to both chains

Toothbrush

Chair (Typical - subadditivity) Canoe (Atypical - superadditivity)
Samples = {chair, chair} Samples = {canoe, toothbrush} Over-estimation (Subadditivity) Under-estimation (Superadditivity’
(c) Proposal gets accepted or rejected (Equation 6.4) (d) Sub- and super-additivity

Figure 6.1: Demonstration of how MCMC sampling can give rise to sub- and super-additivity for different unpacked versions
of the question : “In the presence of a table, what is the probability that there is also another object starting with C?”. The
color gradient indicates probability density. (a) The chain initialized with a typical unpacking starts at ‘chair’, a high probability
hypothesis, denoted by a darker shading, while the chain initialized with an atypical unpacking starts at ‘canoe’, a low probability
hypothesis, denoted by a lighter shading. (b) For the purposes of illustration we show the same new intermediate probability
proposal of ‘toothbrush’ being made to both chains. In the model, this proposal is randomly generated for each chain. (c)
Since the probability of ‘toothbrush’ is significantly higher than ‘canoe’ the proposal is accepted by the atypically unpacked
chain. But conversely since it is significantly less probable than ‘chair’, is likely rejected by the typically unpacked chain. (d)
The tendency for the typically unpacked chain to tarry in the high probability region of the queried object set, gives rise to
sub-additivity, whereas the tendency for the atypically unpacked to get easily derailed into regions outside the queried object
set gives rise to super-additivity.
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is the probability that there is also a chair, a computer, or any other object beginning with C?” generates
higher probability estimates relative to the packed query “what is the probability that there is another
object beginning with C?”, whereas the atypically unpacked query “what is the probability that there is
also a cow, a canoe, or any other object beginning with C?” generates lower probability estimates compared
to the packed query.

The generative model for this scene inference task is approximated by fitting the database of natural
scenes with hand-labeled objects, provided in Greene7#, to a latent Dirichlet allocation (LDA) model*.
Specifically, the database consists of object co-occurrence statistics in natural scenes, which we model with
a set of underlying “topics” (probability distributions over objects). This model allows us to analytically
compute the joint probability of any combination of different objects. Finding the exact normalized con-
ditional probabilities is still intractable due to the combinatorially large number of possible hypotheses to
normalize over, but Monte Carlo sampling methods like MCMC can approximate these probabilities.

We were also able to account for the sub- and super-additivity effects using MCMC under the assump-
tion that the unpacked exemplars initialize the Markov chain that generates the sample set of query objects
conditioned on the given cue object”. Because the initialization of the Markov chain transiently deter-
mines its future trajectory, initializing with typical examples causes the chain to tarry in the high probability
region of the queried object set, thereby increasing its judged probability (subadditivity). In contrast, ini-
tializing with atypical examples causes the chain to get more easily derailed into regions outside the queried
object set. This decreases the judged probability of the queried object set (superadditivity). The strength
of these effects theoretically diminishes with the number of samples, as the chain approaches its station-
ary distribution. Accordingly, experimental manipulations that putatively reduce the number of samples,
such as response deadlines and cognitive load, moderate this effect”. The experiments reported in this
paper build on these findings, using subadditivity and superadditivity in the scene inference paradigm to

detect behavioral signatures of amortized inference.
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6.2.2  AMORTIZED INFERENCE

As defined in the previous section, Monte Carlo sampling is memoryless, approximating P(%|d) without
reference to other conditional distributions that have been computed in the past; all the hypothesis sam-
ples are specific to a particular query, and thus there can be no cumulative improvement in approximation
accuracy across multiple queries. However, a moment’s reflection suggests that people are capable of such
improvement. Every time you look out your window, you see a slightly different scene, but it would be
wasteful to recompute a posterior over objects from scratch each time; if you did, you would be no faster
at recognizing and locating objects the millionth time compared to the first time. Indeed, experimental re-
search has found considerable speed-ups in object recognition and visual search when statistical regularities
can be exploited #+.

Amortized inference is a generalization of the standard memoryless framework. We will formulate it
in the most general possible terms, and later explore more specific variants. Figure 6.2 illustrates the ba-
sic idea. In the standard, memoryless framework, an inference engine inverts a generative model P(d, h)
over hypothesis / and data d to compute a recognition model Qy(h|d) parametrized by €. For exam-
ple, Monte Carlo methods use a set of samples to parametrize the recognition model. Importantly, the
answer to each query is approximated using a different set of parameters (e.g., independent samples)—
Oy, (h|d1), Qp,(h|d>), etc. In the amortized framework, parameters are shared across queries. The param-
eters are selected to accurately approximate not just a single query, but a distribution of queries. If cognitive
resources are unbounded, then the optimal solution is to parametrize each query separately, thereby recov-
ering the memoryless framework. Under bounded resources, a finite number of parameters must be shared
between multiple queries, leading to memory effects: the answer to one query affects the answer to other,
similar queries.

While reuse increases computational efficiency, it can cause errors in two ways. First, if amortization is
deployed not only when two queries are identical but also when they are similar, then answers will be biased
due to blurring together of the distributions. This is analogous to interference effects in memory. Second,
the answer to the first query might itself have been inaccurate or biased, so its reuse will propagate that

inaccuracy to the second query’s answer. Our experiments focus on the second type of error. Specifically,
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Memoryless inference Amortized inference

Qo(h|d)

Qp, (hld2)

Figure 6.2: Theory schematic. (Left) Standard, memoryless framework in which a recognition model Qy(%|d) approximates
the posterior over hypothesis /1 given data d. The recognition model is parametrized by 6 (e.g., a set of samples in the
case of Monte Carlo methods). Memoryless inference builds a separate recognition model for each query. (Right) Amortized
framework, in which the recognition model shares parameters across queries. After each new query, the recognition model
updates the shared parameters. In this way, the model “learns to infer.”

we will investigate how the over- or underestimation of unpacked probabilities resulting from approximate

inference for one query will continue to influence responses to a second query.

6.2,.3 TwWO AMORTIZATION STRATEGIES

In our experiments, we ask participants to sequentially answer pairs of queries (denoted Q1 and 9Q2). In
Experiment 2, both queries are conditioned on the same cue object (), but with varying query object sets
(h). That is, both questions are querying the same probability distribution over objects, but eliciting the
probeabilities of different objects in each case. So in theory, all samples taken to answer query 1, can be reused
to answer query 2 (they are both samples from the same distribution). This sample reuse strategy allows
all computations carried out for query 1 to be reused to answer query 2." However, it s expensive, because
each sample must be stored in memory. A less memory-intensive solution is to store and reuse summary
statistics of the generated samples, rather than the samples themselves. This summary reuse strategy ofters

greater efficiency but less flexibility. Several more sophisticated amortization schemes have been developed

“We focus on sampling-based amortization strategies because our earlier experiments support the idea that hu-
man probability judgment is sample-based 7. However, amortization strategies can be realized without any form of
sampling. These typically reduce time complexity by re-using a feedforward mapping from inputs to probabilities
that replaces a more expensive form of iterative computation (e.g., message passing).
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in the machine learning literature 441,369,341 it we focus on sample and summary reuse because they make
clear experimental predictions, which we elaborate below.

In the context of our experiments, summary reuse is only applicable to problems where the answer to
Q2 can be expressed as the composition of the answer to Q1 and another (putatively simpler) computation.
In Experiment2, Q2 queries a hypothesis space that is the union of the hypothesis space queried in Q1 and
a disjoint hypothesis space. For example if Q1 is “What is the probability that there is an object starting
with a C in the scene?”, Q2 could be “What is the probability that there is an object starting with a C or
an R in the scene?”. In this case, samples generated in response to Q1 are summarized by a single number
(“the probability of an object starting with C”), new samples are generated in response to a simpler query
(“the probability of an object starting with R”), and these two numbers are then composed (in this case
added) to give the final estimate for Q2 (“the probability of an object starting with C or R”). This s possible
because both queries are functions of the same probability distribution over latent objects.

These strategies are simplifications of what the brain is likely doing. Reusing all the samples exactly
would involve their storage and is very intensive in its use of memory — in this aspect they are similar to
exemplar models of categorization***". While reusing only the summary statistic is much less memory
intensive, it is unreasonably inflexible to restrict reuse of only the exact statistic in the few places that the
second query can be expressed as a composition of the first query and a simpler computation. We do
not claim that either extreme is plausible, but —to a first approximation— they capture the key ideas
motivating our theoretical framework, and more importantly, they make testable predictions which can
be used to assess which extreme pulls more weight in controlled experiments.

In particular, sample-based and summary-based amortization strategies make different predictions about
how subadditivity and superadditivity change as a function of the sample size (Figure 6.3, details of these
implementations can be found in Appendix A.1). For sample-based amortization, as the sample size for
Q1 grows, the eftect for Q2 asymptotically diminishes and eventually vanishes as the effect of biased ini-
tialization in Q1 washes out. However, initially increasing the sample size for Q1 also amplifies the effects
for Q2 under a sample-based scheme, because this leads to more biased Q1 samples being available for

reuse. The amplification effect dominates up to a sample size of around 230 (estimate for the number of
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Figure 6.3: Simulation of subadditivity and superadditivity effects under sample-based (top) and summary-based (bottom)
amortization strategies. In all panels, the y-axis represents the unstandardized effect size for Q2. Left panels show the effects
of changing the sample size for Q1; right panels show the effects of changing the sample size for Q2. When sample size for
one query is changed, sample size for the other query is held fixed at 230 (the sample size estimated by Dasgupta et al. ”in

the previous chapter
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samples taken for inference in this domain, reported in Dasgupta et al. 7). This effect can be counteracted
by increasing the sample size for Q2. These are unbiased samples, since Q2 is always presented as a packed
query. More such samples will push the effect down by drowning out the bias with additional unbiased
samples.

Under a summary-based strategy, increasing the sample size for Q1 will only diminish the eftects for
Q2, because the bias from Q1 is strongest when the chain is close to its starting point. The effect of early,
biased samples on the summary statistic disappears with more samples. We see also that changing the
number of samples for Q2 does not influence the effect size because the initialization of the chain for Q2
is not influenced by the samples or summary statistic from the answer to Q1. Under the summary-based
strategy, the subadditivity and superadditivity effects for Q2 derive entirely from the same effects for QI,

which themselves are driven by the initializationDasgupta et al. 7.

6.2.4 ADAPTIVE AMORTIZATION

Amortization is not always useful. As we have already mentioned, it can introduce systematic bias into
probabilistic judgments. This is especially true if samples or summary statistics are transferred between
two dissimilar distributions. This raises the question: are human amortization algorithms adaptive? This
question is taken up empirically in Experiment 3. Here we discuss some of the theoretical issues.

Truly adaptive amortization requires a method to assess similarities between queries. Imagine as an
example the situation in which there is a “chair” in the scene and you have to evaluate the probability of
any object starting with a “P”. If afterwards you are told that there is a “book” in another scene, and the
task is again to evaluate the probability of any object starting with a “P”, it could be a viable strategy to
reuse at least some of the previous computations. However, in order to do so efficiently, you would have
to know how similar a chair is to a book, i.e. if they occur with a similar set of other objects on average.
One way to quantify this similarity is by assessing the induced posterior over all objects conditioned on
either “book” or “chair”, and then comparing the two resulting distributions directly. Cues that are more
similar should co-occur with other objects in similar proportions.

To assess the similarity of two distributions over objects induced by two different cues, we will need a
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formal similarity measure. One frequently used measure of similarity between two probability distribu-
tion is the Kullback-Leibler (KL) divergence. For two discrete probability distributions Q and P, the KL

divergence between P and Q is defined as

Dy (P||Q) = ) P(h)log ZE;’)). (6:5)
h

The KL divergence is minimized to o when Q and P are identical. We will use this measure in Experiment
3 to select queries that are either similar or dissimilar, in order to examine whether our participants only
exhibit signatures of amortization when the queries are similar.” Note, however, that the exact calculation
of these divergences cannot be part of the algorithmic machinery used by humans to assess similarity, since
it presupposes access to the posterior being approximated. Our experiments do not yet provide insight
into how humans might algorithmically achieve tractable adaptive amortization, a problem we leave to

future research.

6.3 EXPERIMENT 1: HUMAN INFERENCE IS NOT MEMORYLESS

In Experiment 1, we sought initial confirmation of our central hypothesis: human inference is not memo-
ryless. To detect these “remembrances of inferences past”, we asked participants to answer pairs of queries
sequentially. The first query was manipulated (by packing or unpacking the queried hypothesis) in such
a way that subadditive or superadditive probability judgments could be elicited”?. Crucially, the second
query is always presented in packed form, so any differences across the experimental conditions in answers

to the second query can only be attributed to the lingering effects of the first query.

6.3.1 PARTICIPANTS

84 participants (53 males, mean age=32.61, SD=8.79) were recruited via Amazon’s Mechanical Turk and
received $o.50 for their participation plus an additional bonus of $o.10 for every on-time response. The

sample size for this and all of the following experiments was determined before data collection commenced.

“Our findings do not strongly depend on the use of the KL divergence measure and all of our qualitative effects
remained unchanged when we applied a symmetric distance measure such as the Jensen-Shannon divergence.
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Number of trials left: 11 Time

| see a table.

What is the probability that | also see
chair
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or any other object with C.

0

Submit

Figure 6.4: Experimental setup. Participants were asked to estimate the conditional probability using a slider bar within a
20-second time limit.

We decided to collect more participants than in our earlier work”? as the sub- and superadditivity effects

might be weaker for the amortized answers to the second query.

6.3.2 PROCEDURE

Participants were asked to imagine playing a game in which their friend sees a photo and then mentions
one particular object present in the photo (the cued object). The participant is then queried about the
probability that another class of objects (e.g., “objects beginning with the letter B”) is also present in the
photo.

Each participant completed 6 trials,” where the stimuli on every trial corresponded to the rows in Ta-
ble 6.2. On each trial, participants first answered Q1 given the cued object (for example, “I see a lamp in
this photo. What is the probability that I also see a window, a wardrobe, a wine rack, or any other object
starting with a W?”), using a slider bar to report the conditional probability using values between o (not
at all likely) to 100 (very likely, see also Figure 6.4).

The Q1 framing (typical-unpacked, atypical-unpacked or packed) was chosen randomly. Participants
then completed the same procedure for Q2 (immediately after Q1), conditional on the same cued object.

The framing for Q2 was always packed and Q2 was always presented as a conjunction (for example, “What

“Note that participants were not directly informed that two consecutive trials are related and were therefore
instructed that there would be 12 trials in total as there are two queries per query pair.
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Table 6.2: Experimental stimuli and queries for Experiment 1.

Cue o1 Q1-Typical Q1-Atypical a2

Table C chair, computer, cannon, cOw, canoe CorR
curtain

Telephone D display case, dresser, drinking fountain, DorL
desk dryer, dome

Rug B book, bouquet, bed bird, buffalo, bicycle BorS

Chair P painting, plant, printer  porch, pie, platform PorA

Sink T table, towel, toilet trumpet, toll gate, TorE

trunk

Lamp W window, wardrobe, wheelbarrow, water WorF

wine rack fountain, windmill

is the probability I see an object starting with a W or F?”), where the order of the letters was determined at
random.
Data for this experiment and all subsequent experiments reported in this article were submitted along

with the final manuscript.

6.3.3 REsULTs

Six participants were excluded from the following analysis, four of whom failed to respond on time in
more than half of the questions, and two of whom entered the same response throughout.

We applied one-sided hypothesis testing for all hypothesis involving sub- and superadditivity effects as
these effects only make sense when assessed directionally.

Consistent with our previous studies 7, we found both subadditivity and superadditivity effects for Q1,
depending on the unpacking: probability judgments were higher for unpacked-typical queries than for
packed queries (a subadditivity effect; 59.35 vs. 49.67;¢(77) = 4.03, p < 0.001) and lower for unpacked-
atypical than for packed queries (a superadditivity effect; 31.42 vs. 49.67; 1(77) = —6.44,p < 0.001).

Next we calculated the difference between each participant’s response to every query and the mean
packed response to the same queried object. This difference was then entered as a dependent variable
into a linear mixed effects regression with random effects for both participants and queried objects as

well as a fixed effect for the condition. The resulting estimates revealed both a significant subadditiv-
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ity effect (difference = 12.60 % 1.25, #(610.49) = 10.083, p < 0.0001) and superadditivity effect
(difference = —15.69 + 1.32,#(615.46) = —11.89,p < 0.0001).

Additionally, we found evidence that participants reused calculations from Q1 for Q2: even though all
Q2 queries were presented in the same format (as packed), the estimates for that query differed depending
on how Q1 was presented. In particular, estimates for Q2 were lower when Q1 was unpacked to atypical
exemplars (46.38 vs 56.83; #(77) = 5.08, p < 0.001), demonstrating a superadditivity effect that carried
over from one query to the next. We did not find an analogous carry-over effect for subadditivity (58.47
vs. 56.83;1(77) = 0.72, p = 0.4). This is possibly due to the subadditivity effect “washing out” more
quickly (i.e. with fewer samples) than superadditivity, as has been observed in this domain before??.”

We calculated the difference between each participant’s response for every Q2 and the mean response for
the same object averaged over all responses to Q2 conditional on Q1 being packed. The resulting difference
was again entered as the dependent variable into a linear mixed effects regression with both participants
and cued object as random effects as well as condition as a fixed effect. The resulting estimates showed
both a significant subadditivity effect (difference = 4.39 + 1.14, #(606.40) = 3.83,p < 0.001) and
superadditivity effect (difference = —7.86 + 1.21,#(610.41) = —6.50, p < 0.0001).

We calculated each participant’s mean response to all packed hypotheses for Q2 over all trials asa baseline
measure and then assessed the difference between each condition’s mean response and this mean packed
response. This resulted in a measure of an average effect size for the Q2 responses (how much each partic-
ipant under- or overestimates different hypotheses as compared to an average packed hypothesis). Results
of this calculation are shown in Figure 6.s.

The superadditivity effect was significantly greater than o (#(77) = 5.07, p < 0.001). However, the
subadditivity effect did not differ significantly from o (¢(77) = —0.42, p > 0.6; sce also cDasgupta
etal.”?).

Next, we explored whether responses to Q1 predicted trial-by-trial variation in responses to Q2. Fig-

ure 6.6 shows the difference between participants’ estimates for Q1 and the true underlying probability of

"The extent and direction of this asymmetry depends on the difference between how many samples it takes on
average to get out of modes once the chain is in them (the root cause of subadditivity), and how many samples it takes
on average to find high probability areas when the chain is far away from them (the root cause of superadditivity).
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Experiment 1: Results

Relative mean estimates

-10

Unpacked Unpacked
Atypical - Typical
Condition

Figure 6.5: Experiment 1: Differences between Q2 responses for each condition and an average packed baseline. A negative
relative mean estimate indicates a superadditivity and a positive relative mean estimate a subadditivity effect. Error bars
represent the standard error of the mean.

the query (as derived by letting our MCMC model run until convergence) plotted against the same differ-
ence for Q2.7 If participants do indeed reuse computations, then how much their estimates deviate from
the underlying truth for Q1 should be predictive of the deviance of their estimates for Q2.

We found significant positive correlations between the two queries in all conditions when aggregating
across participants (average correlation: ¥ = 0.67, p < 0.01). The same conclusion can be drawn from
analyzing correlations within participants and then testing the average correlation against o (r = 0.55,
p < 0.01). Moreover, the within-participant effect size (the response difference between the unpacked
conditions and the packed condition) for Q1 was correlated with responses to Q2 for both atypical (r =
0.35,p < 0.01) and typical (r = 0.21, p < 0.05) unpacking conditions. This means that participants

who showed greater subadditivity or superadditivity for Q1 also showed correspondingly greater effects

x‘Although we did not initially plan to perform the analysis using difference scores, we believe that this is the
correct way to report our results as it takes into account the mean differences between the judgments. In fact, per-
forming the correction actually lead to smaller correlations and weaker effects overall as compared to using the raw
values.
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Figure 6.6: Trial-by-trial analyses of Experiment 1. Difference between Q1 responses and true probability (as assessed by
our MCMC model) plotted against the same quantity for Q2. Lines show the least-squares fit with standard error bands.

for O2.

6.3.4 DiscussioN

Experiment 1 established a memory effect in probabilistic inference: answers to a query are influenced by
answers to a previous query, thereby providing evidence for amortization. In particular, both a sub- and a

superadditivity effect induced at Q1 carried over to 92, and participants showing stronger effect sizes for

Q1

both sub- and superadditivity for Q1 also showed greater eftects for Q2.

6.4 EXPERIMENT 2: DISTINGUISHING ALGORITHMS FOR AMORTIZATION

Our next experiment sought to discriminate between sample-based and summary-based amortization strate-

gies. We follow the logic of the simulations shown in Figure 6.3, manipulating cognitive load at Q1 and
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Q2 in order to exogenously control the number of samples (see Thaker et al. 47, Dasgupta et al. 7, for a
similar approach).

In addition to cognitive load, we manipulate the “overlap” of Q1 with Q2, by creating a new set of
queries with no overlap between the hypothesis spaces of the query pairs. We predicted that we would
only see a memory effect for queries with overlapping pairs. This manipulation allows us to rule out an
alternative trivial explanation of our results: numerical anchoring (high answers to the first query lead to
high answers to the second query). If the apparent memory effect was just due to anchoring, we would

expect to see the effect regardless of query overlap, contrary to our predictions.

6.4.1 PARTICIPANTS

80 participants (53 males, mean age=32.96, SD=11.56) were recruited from Amazon Mechanical Turk and
received $0.50 as a basic participation fee and an additional bonus of $o.10 for every on time response as

well as $o.10 for every correctly classified digit during cognitive load trials.

6.4.2 PROCEDURE

The procedure in Experiment 2 was largely the same as in Experiment 1, with the following differences. To
probe if the memory effects arise from reuse or from numerical anchoring, we added several Q2 queries
to the list shown in Table 6.2. These Q2 queries have no overlap with the queried hypothesis for Q1 (for
example, T or R’ instead of ’C or R’ in the trial shown in the first row in Table 6.2). In other words, these
queries could not be decomposed such that the biased samples from Q1 would be reflected in the answer
to 92, so the sub- and super-additive effects would not be seen to carry over to Q2 were reuse to occur.
We refer to these queries as “no overlap”, in contrast to the other “partial overlap” queries in which one of
the letters overlapped with the previously queried letter. Half of the queries had no overlap and half had
partial overlap, randomly interspersed. The stimuli used in Experiment 2 are shown in Table 6.3.

To probe if the memory effect arises from reuse of generated samples (sample-based amortization) or
reuse of summaries (summary-based amortization), we also manipulated cognitive load: on half of the

trials, the cognitive load manipulation occurred at Q1 and on half at Q2. A sequence of 3 different digits
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Table 6.3: Experimental stimuli and queries for Experiment 2.

Cue o1 Q1-Typical Q1-Atypical Q2 Partial 92 No
overlap overlap
Table C chair, computer, cannon, Cow, CorR TorR
curtain canoe
Telephone D display case, drinking fountain, DorL GorL
dresser, desk dryer, dome
Rug B book, bouquet, bird, buffalo, BorS DorS
bed bicycle
Chair P painting, plant, porch, pie, PorA MorA
printer platform
Sink T table, towel, toilet  trumpet, toll gate, T orE ForE
trunk
Lamp W window, wheelbarrow, WorF LorF
wardrobe, wine water fountain,
rack windmill

was presented prior to the query, where each of the digits remained on the screen for 1 second and then
vanished. After their response to the query, participants were asked to make a same/different judgment
about a probe sequence. Half of the probes were old and half were new.

We hypothesized that partial overlap would lead to stronger amortization effects, whereas no overlap
would lead to weaker effects. Furthermore, if participants are utilizing sample-based amortization, then
cognitive load during Q2 should increase the amortization effect: if more samples are generated during Q1
(which are the samples that contain the sub- or superadditivity biases) and these samples are concatenated
with fewer unbiased samples during 92, then the combined samples will be dominated by biased sam-
ples from Q1 and therefore show stronger effects. Vice versa, if participants are utilizing summary-based
amortization, then cognitive load during Q1 should increase the amortization effect: if less samples are
generated during Q1, then a summary of those samples will inherit a stronger sub- or superadditivity ef-
fect such that the overall amortization effect will be stronger if the two summaries are combined (assuming

that the summaries are combined with equal or close-to equal weights).
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6.4.3 REsuLTs

Analyzing only the queries with partial overlap (averaging across load conditions), we found that proba-
bility judgments for Q1 were higher for unpacked-typical compared to packed conditions (a subadditivity
effect; #(79) = 4.38, p < 0.001) and lower for unpacked-atypical compared to packed (a superadditivity
effec; #(79) = —4.94, p < 0.001). These same effects occurred for Q2 (unpacked-typical vs. packed:
1(79) = 2.44,p < 0.01; unpacked-atypical vs. packed: #(79) = —1.93, p < 0.05).

We again calculated the difference between each participant’s response to every query during Q1 and
the overall mean response for the same query object in the packed condition. This difference was then
used as the dependent variable in a linear mixed-effects regression model with participants and queried
object as random effects and condition as fixed effect. The resulting estimates showed both a significant
subadditivity effect (difference = 13.64 £ 1.57, £(396.95) = 8.70, p < 0.0001) and superadditivity
effect (—14.90 + 1.56,¢(395.48) = —9.55,p < 0.0001). Afterwards, we repeated the same analysis for
responses to Q2 (as in Experiment 1). This analysis again showed significant indicators of amortization as
both the subadditivity (difference = 5.37£1.34,#(398.01) = 4.02, p < 0.001) and the superadditivity
effect (difference = —4.92 + 1.34,#(398.01) = —3.69, p < 0.001) were still present during Q2.

Next, we assessed how the memory effect was modulated by cognitive load and overlap (Figure 6.7).
When cognitive load occurred during Q2 and there was no overlap, none of the conditions produced an
effect significantly different from o (all p > 0.5). When cognitive load occurred during Q2 and there
was partial overlap, only typically unpacked hypotheses produced an effect significantly greater than o
(¢(38) = 2.14, p < 0.05). When cognitive load occurred during Q1 and there was no overlap, we again
found no evidence that the conditions differ from o (all p > 0.05). Crucially, if cognitive load occurred
during Q1 and there was partial overlap, both conditions showed the expected subadditive (#(38) = 4.18,
p < 0.05) and superadditive (#(46) = —1.89, p < 0.05) effects. Moreover, calculating the average
effect size of amortization for the different quadrants of Figure 6.7, the partial overlap-cognitive load at
Q1 condition produced the highest overall effect (d = 0.8), followed by the partial overlap-cognitive
load at Q2 condition (d = 0.56) and the no overlap-cognitive load at Q1 condition (d = 0.42). The

no overlap-cognitive load at Q2 condition did not produce an effect greater than o. Partial overlap trials
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Experiment 2: Results
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Figure 6.7: Experiment 2: Differences between Q2 responses for each condition and an average packed baseline. A negative
relative mean estimate indicates a superadditivity and a positive relative mean estimate a subadditivity effect. Error bars
represent the standard error of the mean.
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were also more strongly correlated with responses during Q1 than trials with no overlap (0.41 vs 0.15,
t(79) = —2.1,p < 0.05).

Next, we calculated the difference between all responses to Q2 and the mean responses to Q2 over
queried objects provided that Q1 was packed. This difference was entered into a linear mixed-effects re-
gression that contained overlap, cognitive load, and the presentation format of Q1 as fixed effects, and par-
ticipants and the queried objects as random effects. We then assessed the interaction between cognitive load
and the sub- and superadditivity conditions while controlling for overlap. The resulting estimates showed
that there was a significant subadditivity effect (difference = 5.25 +2.12,#(417.08) = 2.48 p < 0.05)
but no superadditivity effect (difference = —3.19 £ 2.17, #(419.23) = —1.47,p = 0.17) when
cognitive load was applied during Q2. Importantly, both the subadditivity (difference = 5.83 & 2.25,
1(418.91) = 2.59,p < 0.05) and the superadditivity (difference = —6.86+£2.21,#(419.80) = —3.102,
p < 0.01) effects were present when cognitive load was applied during Q1. This finding points towards a
larger amortization effect in the presence of cognitive load on Q1, thus supporting a summary-based over
a sampled-based amortization scheme.

Further, on trials with cognitive load at Q2, participants were on average more likely to answer the probe
correctly for partial overlap trials compared to no overlap trials (#(36) = 3.16, p < 0.05). This is another
signature of amortization: participants are expected to have more resources to spare for the memory task at
Q2 if the computations they executed for Q1 are reusable in answering Q2. This also indicates that these
results cannot be explained by simply initializing the chain for Q2 where the chain for Q1 ended, which
would not have affected the required computations.

Interestingly, there was no evidence for a significant difference between participants’ responses to Q2
under cognitive load in Experiment 2 as compared to participants’ responses to Q2 in Experiment 1 when
no cognitive load during either Q1 or Q2 was applied (#(314) = —1.44,p = 0.15).

Finally, we assessed how much the difference between responses for Q1 and the true underlying prob-
abilities were predictive of the difference between responses for Q2 and the true underlying probabilities
(Figure 6.8). There wasa strong correlation between responses to Q1 and Q2 over all conditions (» = 0.41,

p < 0.001), for the packed (r = 0.44, p < 0.001), the typically unpacked (r = 0.36,p < 0.01), as
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Figure 6.8: Trial-by-trial analyses of Experiment 2. Relationship between difference between Q1 responses and true probabil-

ity (as assessed by our MCMC model) and Q2 responses and true probability. Lines show the least-squares fit with standard
error bands.

well as the atypically unpacked condition (» = 0.40, p < 0.01). Moreover, the differences of Q1 and
Q2 responses from the true answer were also correlated within participants (mean » = 0.31, p < 0.01)
and participants who showed stronger subadditivity or superadditivity effects for Q1 also showed stronger
effects for Q2 overall (r = 0.31, p < 0.001), for the superadditive (r = 0.3, p < 0.001), and for the

subadditive condition ( = 0.29, p < 0.001). This replicates the amortization effects from Experiment 1.

6.4.4 DiIscussioN

Experiment 2 extended the findings of Experiment 1, suggesting constraints on the underlying amortiza-
tion strategy. Participants exhibited an intricate pattern of sensitivity to cognitive load and query overlap.
Based on our simulations (Figure 6.3), we argue that the effect of cognitive load at Q1 on Q2 responses

is more consistent with summary-based amortization than with sample-based amortization. Summary-
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based amortization is less flexible than sample-based amortization, but trades this inference limitation for
an increase in memory efficiency, and is thus consistent with the idea that humans adopt cost-efficient
resource-rational inference strategies'***>*7*. Further supporting this idea is our finding that performance
on the secondary task was better in the partial overlap conditions, indicating that more resources are avail-
able when computations can be amortized.

Our design allowed us to rule out a numerical anchoring effect, whereby participants would give high
answers to the second query if they gave high answers to the first query. This effect should be invariant
to the extent of overlap of the queried hypothesis spaces, but contrary to the anchoring hypothesis, the

memory effect was stronger in the high overlap condition.

6.5 EXPERIMENT 3: ADAPTIVE RE-USE OF INFERENCES

In this experiment we further probe the strategic nature of amortization. So far, all generated hypotheses
have been reusable, since both queries probe the same probability distribution, conditioned on the same
cue object. By changing the cue object between Q1 and Q2 and manipulating the similarity between the
cues, we can control how reusable the computations are. Note that this is in contrast to the notion of
“overlap” in Experiment 2 where all the samples from Q1 are always “reusable” in Q2 since both query
the same probability distribution, but in the no overlap conditions, the queried hypotheses spaces do not
overlap resulting in the biased samples from QI not being reflected in Q2 judgments. The notion of
reusability now allows us to test whether or not reuse always occurs, or if it occurs preferentially when it is

more applicable (i.e., under high similarity between cues).

6.5.1 PARTICIPANTS

100 participants (41 females, mean age=3s.74, SD=11.69) were recruited from Amazon Mechanical Turk

and received $o.50 as a basic participation fee and an additional bonus of $o.10 for every on time response.
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Table 6.4: Experimental stimuli and queries for Experiment 3. Kullback-Leibler (KL) divergence between the posteriors for Q1
and Q2 are shown in parentheses.

Cuer o1 Q1-Typical Q1-Atypical Cuez-sim Cueza-diff
(KL) (KL)

Rug B book, bouquet, bird, buffalo, Curtain Car (8.658)
bed bicycle (0.080)

Chair P painting, plant, porch, pie, Book Road
printer platform (0.031) (8.508)

Sink T table, towel, toilet  trumpet, toll gate, ~ Counter Sidewalk

trunk (0.001) (8.503)

6.5.2 PROCEDURE

The procedure was similar to Experiments 1 and 2. The only difference was that participants were shown
a new cue word for Q2, asking them to judge the probability of objects starting with the same letter as
the letter from Q1 with no conjunction of letters (i.e., same query space, full overlap). The query for Q2
was always packed, as in previous experiments. The new cue words for Q2 were generated to either have
posterior with a low (similar cues) or a high (dissimilar cues) KL divergence from the Q1 posterior. The
range of KL divergences fell between 0 and 9; all similar cue words had conditional distributions with KL
divergence of less than 0.1, and all dissimilar cue-words had a KL divergence of greater than 8.5. The exact

KL divergences are reported in Table 6.4.

6.5.3 REsuLTs

Seven participants did not respond on time to more than a half of all queries and were therefore excluded
from the following analysis.

We again found that probability judgments for Q1 in the typically unpacked queries were higher than in
the unpacked condition (subadditivity effect: #(92) = 4.67, p < 0.001) and that probability judgments
in the atypically unpacked condition were lower than in the unpacked condition (superadditivity effect:
1(92) = 3.25,p < 0.01).

Analyzing the probability judgments for @2, we found a significant subadditivity effect ((#(92) = 2.28,
p < 0.05) but not a significant superadditivity effect (56.06 vs. 55.31;#(92) = 0.07,p = 0.94).
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Experiment 3: Results
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Figure 6.9: Experiment 3: Differences between Q2 responses for each condition and an average packed baseline. A negative
relative mean estimate indicates a superadditivity effect and a positive relative mean estimate a subadditivity effect. Error bars
represent the standard error of the mean.

As before, we calculated the difference between each participant’s response to every query during Q1
and the overall mean response for the same query object in the packed condition. This difference was
entered as the dependent variable into a linear mixed-effects regression model with participants and queried
object as random effects and condition as fixed effect. The resulting estimates showed both a significant
subadditivity effect (difference = 14.39 £ 1.97,#(189.84) = 7.31, p < 0.0001) and a superadditivity
effect (—13.72 £ 1.98, £(190.18) = —6.941, p < 0.0001). Repeating this analysis for responses to Q2
revealed a significant amortization effect for the typically unpacked condition (difference = 5.21 + 1.90,
t(191) = 2.74, p < 0.05) but not for the atypically unpacked condition (difference = —2.49 + 1.91,
1(191.52) = —1.303 p = 0.19).

For the dissimilar cues, we did not find statistical evidence for an effect of subadditivity (¢(49) = 1.31,
p = 0.19) or superaditivity (£(47) = —0.27, p = 0.79). However, for the similar cues at 92, the effect
for the typically unpacked condition was significantly different from o (subadditivity effect: #(47) = 3.30,
p < 0.01), whereas there was again no superadditivity effect (#(48) = 0.54, p = 0.59). The difference
between the size of the subadditivity effect was marginally bigger for the similar cues as compared to the

dissimilar cues (#(36) = 1.83, p = 0.07) and the overall effect size of the similar cues was d = 0.17,
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Figure 6.10: Trial-by-trial analyses of Experiment 3. Relationship between difference between Q1 responses and true proba-

bility (as assessed by our MCMC model) and O2 responses and true probability. Lines show the least-squares fit with standard
error bands.

whereas the effect size for the dissimilar cues wasd = 0.11.

The difference between judgments and the true probabilities was correlated between Q1 and Q2 (r =
0.34, p < 0.001), for the packed (» = 0.43, p < 0.001), the typically unpacked (r = 0.43, p < 0.001),
but not the atypically unpacked condition (» = 0.20, p = 0.3); see Figure 6.10. Participants who showed
higher subadditivity or superadditivity effects for Q1 also showed higher effects for Q2 overall (» = 0.29,
p < 0.001), for the typically unpacked condition (» = 0.39, p < 0.001), but not for the atypically

unpacked condition (r = 0.11, p = 0.29).

6.5.4 DiscussioN

Experiment 3 assessed the strategic nature of amortization by manipulating the similarity between cues,

which presumably affected the degree to which amortization is useful. We found a stronger subadditivity
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effect for similar cues compared to dissimilar cues, indicating that reuse is at least partially sensitive to
similarity.

An unexpected finding was that while the superadditivity effect in aytpically-unpacked Q1 was sig-
nificant, neither the memory-based superadditivity effect (in Q2) nor correlations across the queries for
atypically-unpacked Q1 were significant. This indicates that the answers to the atypically-unpacked Q1
are not detectably being reused in Q2 in this experiment. However, in Experiments 1 and 2, the atypically-
unpacked answers seem to be reused (as indicated by a robust memory-based superadditivity effect, and
correlations across the queries) when the cue object remains the same. This may be because the extent of ra-
tional reuse here (where the cues change) is smaller than in previous experiments (where the cues remained

the same) and therefore harder to detect.

6.6 GENERAL DiscussioN

We tested a model of amortized hypothesis generation across 3 experiments and found that participants
not only exhibited subadditive and superadditive probability judgments in the same paradigm replicating
Dasgupta et al. 7%, but also carried over these effects to subsequent queries—a memory effect on inference.
Experiment 2 demonstrated that this memory effect is some function of the hypotheses generated in the
first query and made some inroads into trying to understand this function. We found that the effect is
stronger when cognitive load is applied to the first query, suggesting that the memory effect is driven by
a form of summary-based amortization, whereby a summary statistic of the first query is computed from
the samples and then reused to answer subsequent queries, provided they can be expressed in terms of
previous computations. Summary-based amortization gives up some flexibility (compared to reusing the
raw samples generated by past inferences), in order to gain memory-efficiency. Experiment 3 demonstrated
that the memory effect selectively occurs when the queries are similar, indicating that reuse is deployed
specifically when it is likely to be useful.

Building on earlier results***, our findings support the existence of a sophisticated inference engine that
adaptively exploits past computations. While reuse can introduce error, this error may be a natural con-

sequence of a resource-bounded system that optimally balances accuracy and efficiency 72465145 The
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incorporation of reuse into a Monte Carlo sampling framework allows the inference engine to preserve

asymptotic exactness while improving efficiency in the finite-sample regime.

6.6.1 RELATED WORK

This work fits into a larger nexus of ideas exploring the role of memory in inductive reasoning. Heit,
Hayes and colleagues have carried out a number of studies that make this link explicit>»*9%2°>7 - For
example, Heit & Hayes*> developed a task in which participants studied a set of exemplars (large dogs
that all possess “beta cells”) and then on a test set of exemplars (consisting of large and small dogs) made
either property induction judgments (“does this dog have beta cells?”) or recognition memory judgments
(“did this dog appear in the study phase?”). The key finding was that property induction and recognition
memory judgments were strongly correlated across items, supporting the hypothesis that both judgments
rely on a shared exemplar similarity computation: test exemplars are judged to be more familiar, and have
the same latent properties, to the degree that they are similar to past exemplars. Heit and Hayes showed
that both judgments could be captured by the same exemplar model, but with a broader generalization
gradient for induction.

Another example of memory effects on inference is the observation that making a binary decision about
a noisy stimulus (whether dots are moving to the left or right of a reference) influences a subsequent con-
tinuous judgment about motion direction**. Stocker and colleagues*+***# refer to this as “conditioned
perception” or “self-consistent inference” because it appears as though observers are conditioning on their
decision as they make a choice. Fleming & Daw *° have pushed this idea further, arguing that observers
condition on their own confidence about the decision. Self-consistent inferences may reflect rational con-
ditioning on choice or confidence information when a memory trace of the stimulus is unavailable or un-
reliable.

Another important consideration for the study of amortization is the utility conferred by reuse rather
than simply the efficiency. Previous work has explored resource-rational solutions to balancing the utility
of events with their probability of occurrence 745?748 These have successfully modeled effects such as

the over-representation of low frequency events with extreme utilities, indicating a possible role for utility
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in availability for subsequent reuse.

An intriguing explanation of order effects has been reported by Wang and colleagues*7+475. The key
idea, derived from a quantum probability model of cognition (see also Trueblood & Busemeyer ), is that
answering a question will cause the corresponding mental state to linger and thus “superpose” with the
mental state evoked by a second question. This superposition gives rise to a particular symmetry in the
pattern of judgments when question order is manipulated, known as the guantum question order equaliry
(see Wang & Busemeyer #7# for details). Our amortization framework does not intrinsically make this
prediction, but nor does it necessarily exclude it. Rather, we prefer to think about superposition states as
arising from computational principles governing a computation-flexibility trade-off. Roughly speaking,
states superpose in our framework because the inference engine is reusing information from past queries.

Recently, Costello & Watts ® pointed out that the quantum question order equality could arise from
rational probabilistic reasoning corrupted by correlated noise. In particular, answers to a probabilistic
query will be corrupted by samples retrieved recently to answer another probabilistic query (similar to the
concept of “overgeneralization” in probabilistic estimation, as developed in Marchiori et al. ***). Costello
& Watts °° view this as a kind of priming effect. Alternatively, correlated noise would arise in the amortized
inference framework due to stochastic reuse. Thus, amortization might provide a complementary rational
analysis for the “probability theory plus noise” model proposed by Costello & Watts .

Most closely related to the present paper is the work of Dougherty and colleagues®#4%44994:93 who
have pursued the idea that probability judgments depend on the generation of hypotheses from memory.
In particular, they argue that subadditivity arises from the failure to generate hypotheses, much like the
account offered by Dasgupta et al. 7%, and that this failure is exacerbated by cognitive load or low working
memory capacity. The key difference from our account is the particular way in which memories are used
to generate hypotheses. For combinatorial hypothesis spaces like the scene inference task used here and by
Dasgupta et al. 7%, one cannot assume that all the relevant hypotheses are already stored in memory; rather,
these must be generated on the fly—a function we ascribe to MCMC sampling, where new hypotheses
that have never been seen before can be generated from a probabilistic generative model, and only these

generated samples need be stored for the purposes of inference. The present paper asserts a more direct
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role for memory within a sampling framework, by controlling the trade-off between computation and
flexibility.

This trade-off mirrors a similar tension in reinforcement learning, where the goal is to estimate long-
term reward”®77%°. This is discussed in greater detail in Chapter 4. “Model-based” algorithms estimate
long-term reward by applying tree search or dynamic programming to a probabilistic model of the environ-
ment. This is flexible, but computationally expensive. “Model-free” algorithms avoid this cost by directly
estimating long-term rewards by interacting with the environment, storing these estimates in a look-up
table or function approximator. This is computationally cheap but inflexible. In other words, model-free
algorithms trade time for space, much in the same way that amortized inference uses memory to reduce
the cost of approximate inference. Analogous to our proposed summary-based amortization strategy, re-
cent work has suggested that model-free value estimates can be incorporated into model-based tree search
algorithms®?, thus occupying a middle ground in the time-space trade-off.

Our work has focused on fairly simple forms of amortization. There exists a much larger space of more
sophisticated amortization strategies developed in the machine learning literature #***. Finding behav-
iorally distinguishable versions of these algorithms is an interesting challenge. These versions could take
the form of reuse in much more abstract ways, such as developing strategies and heuristics, instead of just
local reuse in a sequence of queries. We believe that further examining established eftects of heuristics
and biases through the lens of computational rationality will continue to produce interesting insights into
principles of cognition. We further this approach in the next Chapter, exploring amortization in greater

detail.
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Amortization in a variational framework

In the previous two chapters, we have discussed how several observations about human probabilistic in-
ference can be explained with sampling-based approximation architectures under ecological constraints.
However, these models cannot account for a crucial characteristic of some of these deviations: depending
on the domain, they sometimes go in opposite directions. Whereas some studies suggest that people under-
react to prior probabilities (base rate neglecr), other studies find that people under-react to the likelihood
of the data (conservatism). While these have separately been modeled as different heuristics, it remains
unclear why one heuristic appears in certain domains, while a different one applies in other domains.

I argue that these deviations arise because the human brain does not rely solely on a general-purpose
mechanism for approximating Bayesian inference that is invariant across queries. Instead, the brain is
equipped with a recognition model that maps queries to variational probability distributions, that flexibly
amortizes previous computations. The parameters of this recognition model are optimized to get the out-

put as close as possible, on average, to the true posterior. Because of our limited computational resources,
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the recognition model will allocate its resources so as to be more accurate for high probability queries than
for low probability queries. This results in heuristic inference strategies, that adapt to the environment.
By adapting to the query distribution, the recognition model exhibits ecological rationality.

I show that this theory can explain why and when people under-react to the data or the prior, and a
new experiment demonstrates that these two forms of under-reaction can be systematically controlled by
manipulating the query distribution. The theory also explains a range of related phenomena: memory
effects, belief bias, and the structure of response variability in probabilistic reasoning. It can also explain
a quandary from the previous chapter of how to flexibly re-use inferences across different probability dis-
tributions. I also discuss how the theory can be integrated with sampling-based accounts of approximate

inference.

7.1 CONTEXT-SENSITIVITY OF INFERENTIAL ERRORS

Studies of probabilistic reasoning frequently portray people as prone to errors #*4*775" The cognitive
processes that produce these errors is the subject of considerable debate****>*°. One influential class of
models holds that rational probabilistic reasoning is too cognitively burdensome for people, who instead

use a variety of heuristics %5%4°¢

. Alternatively, rational process models hold that errors arise from princi-
pled approximations of rational reasoning, for example some form of hypothesis sampling7»**"**4. These
different perspectives have some common ground; certain heuristics might be considered accurate approx-
imations 53432,

One challenge facing both heuristic and rational process models is that people appear to make different
errors in different contexts. For example, some studies report base rate neglect'™7>***, the finding that
people under-react to prior probabilities relative to Bayes’ rule. Other studies report conservatism**%+, the

finding that people under-react to evidence.”

Heuristic models respond to this challenge by allowing heuristics to be context-sensitive, an example of

“We will mostly avoid the term “conservatism” to denote under-reaction to data, because it is sometimes con-
flated with a bias to give “conservative” probability judgments (i.c., judgments close to uniform probability). These
distinct phenomena make the same predictions only when the prior is uniform over hypotheses. We return to the
second use of the term later in the article.
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strategy selection™**%'. Most models of strategy selection assume that people are able to assess the usefulness

223,18,270

of a strategy, through cost-benefit analysis , reinforcement learning %, or based on the strategy’s

e Leqe . , . 202,400
applicability in a particular domain

. All of these approaches require, either explicitly or implicitly,
a feedback signal. This requirement poses a problem in inferential settings where no feedback is available.
People can readily answer questions like “How likely is it that a newly invented machine could transform
arose into a blackbird?”*77 which lack an objective answer even in principle.

Most rational process models are based on domain-general algorithms, and thus struggle to explain the
context-sensitivity of inferential errors see*** for a similar argument. Some models explain why certain
kinds of queries induce certain kinds of errors7?, but do not explain how errors can be modulated by other
queries in the same context™#>74,

In this paper, we develop a new class of rational process models that explain the context-sensitivity of
inferential errors. Specifically, we propose that people learn to infer. Instead of a domain-general inference
algorithm that treats all queries equally, we postulate an approximate recognition model***' that maps
queries to posterior probabilities.” The parameters of this recognition model are optimized based on the
distribution of queries, such that the output is on average as close as possible to the true posterior. This
leads to learned biases in which sources of information to ignore, depending on which of these sources
reliably co-vary with the true posterior.Jr Importantly, this optimization is carried out without explicit
feedback about the true posterior*°.

Like other rational process models, our approach is motivated by the fact that any computationally
realistic agent that performs inference in complex probabilistic models—in the real world, in real time—
will need to make approximate inferences. Exact Bayesian inference is almost always impossible. “Learning
to infer” refers to a particular approximate inference scheme, using a pattern recognition system (such as

a neural network, but it could also be an exemplar generalization model) to find and exploit patterns in

“When the recognition model is parametrized as a neural network, it is sometimes also referred to as an inference
network 308341,

"We focus on domains where we can control this covariance (of information sources with the posterior) within
an experiment, to study the development of context-sensitive inferential errors. We also discuss how similar mech-
anisms could explain errors in more ’real-world’ domains where this context is learned from experience before the
experiment, based on ecological distributions of the relevant probabilities.
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the conditional distribution of hypotheses given data (the posterior). We will argue that a relatively simple
model of learned inference is both a good approximate inference scheme, purely on algorithmic terms, and
also can account for a number of patterns of heuristic inference in the behavioral literature, where people
have been observed to deviate from ideal Bayesian updating in ways that are otherwise hard to reconcile
and even appear contradictory, because they appear to deviate from Bayesian norms in different ways and
in different contexts. Our theory of learning to infer explains why these contextual variations are observed,
and why they should be observed, in a system designed to adapt efficient approximate inference to the
environments it finds itself in.

The rest of the paper is organized as follows. We first summarize the empirical and theoretical literature
on our motivating puzzle (under-reaction to prior vs. likelihood). We then introduce our new theory. In
addition to addressing under-reaction, we show that the theory can explain a number of related phenom-
ena: memory effects, belief bias, and the structure of response variability in probabilistic reasoning. In the
Discussion, we connect our theory to previous accounts of approximate inference in human probabilistic

reasoning.

7.2 UNDER-REACTION TO PROBABILISTIC INFORMATION

Given data d, Bayes’ rule stipulates how a rational agent should update its prior probabilistic beliefs P(/)

about hypothesis /:

_ PP
PO = & Pt Py 7

where P(h|d) is the agent’s posterior distribution, expressing its updated beliefs, and P(d|h) is the likeli-
hood, expressing the probability of the observed data under candidate hypothesis 4.

The earliest studies of probabilistic belief updating, carried out by Ward Edwards and his students**9?,
asked subjects to imagine a set of 100 bags filled with blue and red poker chips. “Red” bags were filled
predominantly with red chips, and “blue” bags were filled predominantly with blue chips; the proportion

of colors in each bag type was known to the subjects and manipulated experimentally. The subjects were
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told that one of the bags was randomly selected and a set of chips was randomly drawn from thatbag. They
then had to judge the probability that the observed chips came from each bag, by distributing 100 metal
washers between two pegs. The proportion of washers on each peg was taken to be the subjective report of
the corresponding probability. Closely related studies by Peterson and colleagues used a continuous slider
as the response apparatus 355354356 T is important to emphasize that in these studies, subjects were given all
the relevant information about the data-generating process necessary for computing the posterior. Thus,
there should be no learning about the parameters of this process (i.e., the prior and likelihood).

Early on, it was evident that subjects were not exactly following Bayes’ rule in these experiments, despite
being given all the information needed to compute it. In particular, subjects consistently under-reacted to
the evidence, revising their beliefs less than mandated by Bayes’ rule (a phenomenon commonly referred
to as “conservatism,” though we avoid this term for reasons explained in the Introduction). This phe-
nomenon was robust across many variations of the basic experimental paradigm; later we will discuss a
number of factors that influence the degree of under-reaction.

Several hypotheses about the origin of under-reaction were put forth for a comprehensive review, see™.
One hypothesis held that subjects compute Bayes’ rule correctly, but had an inaccurate understanding of
the underlying sampling distributions. Formally, subjects can be modeled as reporting the following biased

posterior 7(h|d):

 aldP(h
) = S (di P 7

where biases in the posterior are driven by biases in the subjective sampling distribution 7(d|%). To accom-
modate the existence of under-reaction, subjects would need to assume subjective sampling distributions
that were flatter (more dispersed) than the objective distributions. Edwards *? proposed that the subjective

sampling distribution could be modeled as:

__ [P(dn)]®
ﬂ(d|h) = W (7.3)

The parameter w controls the dispersion of the sampling distribution. When @ = 1, the subjective and
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objective sampling distributions coincide. Under-reaction occurs when @ < 1.

The biased sampling distribution hypothesis was supported by the observation that subjective sampling
distributions were indeed flatter than the objective ones, and substituting these beliefs into Bayes’ rule ac-
corded well with reported posterior beliefs**#79. On the other hand, a critical weakness of this hypothesis
is that it cannot explain the existence of under-reaction with a sample size of 1, which would require that
subjects disbelieve the experimenter when they are explicitly told the sampling distribution (i.e., the pro-
portion of red chips in the bag). Moreover, even when subjective sampling distributions are entered into
Bayes’ rule, under-reaction is still sometimes observed e.g., 186

These weaknesses of the biased sampling distribution hypothesis motivated the alternative hypothesis
that subjects are systematically under-weighting the likelihood *®, what Edwards %9 referred to as “conser-
vatism bias.” This hypothesis can be formalized using a generalized version of Bayes’ rule:

[P(d|R)]"P(h)

PO o s TPta P ey 74

where y is a free parameter specifying the weighting of the likelihood. Note that this model is superficially
similar to Edwards ?°’s formalization of the biased sampling distribution hypothesis, and in fact 0 = y
when the denominator of z(d|h) (3, [P(d’|h)]”) is constant as a function of % (for example, in sym-
metric problems, where the proportion of red chips in red bags is one minus the proportion of red chips
in blue bags). However, the psychological interpretation is different: the biased sampling distribution
hypothesis assumes that bias enters at the level of the sampling distribution representation, whereas the
conservatism bias hypothesis assumes that bias enters when subjects combine the prior and likelihood.
Thus, conservatism bias offers no explanation for why subjective sampling distributions should be biased.
It can, however, accommodate the fact that under-reaction occurs for sample sizes of 1, because it posits
that even explicit knowledge of the sampling distribution will not prevent biased updating. Likewise, it
accommodates the observation that under-reaction is still sometimes observed when subjective sampling
distributions are entered into Bayes’ rule.

A third hypothesis, first proposed by DuCharme ?7, is a form of “extreme belief aversion” see also™. If

subjects avoid reporting extreme beliefs, then large posterior odds will be pulled towards o. Consistent with
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this hypothesis, DuCharme *7 found that subjective odds coincided with the true posterior odds only for
posterior odds between —1 and 1; outside this range, subjective odds were systematically less extreme than
posterior odds. A weakness of the extreme belief aversion hypothesis, at least in its most basic form, is that
itassumes a fixed transformation of the true posterior, which means that it cannot account for experiments
in which under-reaction changes across conditions while the true posterior is held fixed e.g.,176’253’26.

The literature on under-reaction to evidence faded away without a satisfactory resolution, in part be-
cause research was driven towards the study of under-reaction to priors by the work of Kahneman and
Tversky *+?3. Instead of using laboratory-controlled scenarios involving bags filled with poker chips, Kah-
neman & Tversky *# invoked more realistic scenarios such as the following:

Jack is a 45 year old man. He is married and has four children. He is generally conservative,
careful, and ambitious. He shows no interest in political and social issues and spends most of

his free time on his many hobbies which include home carpentry, sailing, and mathematical

puzzles.

One group of subjects was told that Jack is one of 100 individuals, 30 of whom are lawyers, and 70 of
whom are engineers. Another group of subjects was told that 70 of the individuals were lawyers and 30
were engineers. Kahneman and Tversky found that subjects were largely insensitive to this manipulation:
subjects in the first group reported, on average, that the posterior probability of Jack being an engineer
was 0.5, and subjects in the second group reported a posterior probability of o.5s. Thus, subjects clearly
under-reacted to prior probabilities—i.e., they exhibited base rate neglect.”

Many subsequent studies have reported under-reaction to priors, though the interpretation of these
studies has been the focus of vigorous debate see*#*. It has been observed in incentivized experiments
e.g.,””>', in real-world markets'#, and in highly trained specialists such as clinicians 98 and psychologists 28,
In addition to establishing the empirical evidence for under-reaction to priors, Kahneman & Tversky **

also proposed the most influential account of its psychological origin. They argued that instead of follow-

ing Bayes’ rule, people may use a representativeness heuristic, judging the probability of a hypothesis based

*Although base rate neglect was popularized by Kahneman and Tversky’s work, it was in fact documented ear-
lier using the poker chip paradigm®®, but this observation was mostly ignored by subsequent research using that

paradigm.
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on the similarity between the observed data and “representative” data under that hypothesis. For example,
the vignette describing Jack is intuitively more representative of engineers than it is of lawyers. If people
judge the probability of category membership based solely on representativeness, then they will neglect
the prior probability of lawyers and engineers in the population, consistent with Kahneman and Tversky’s
results.

To capture under-reaction to priors formally, the model introduced in Eq. 7.4 can be generalized to
allow insensitivity to the prior'7’:

[P(lh))eP(R)
S [P P ()

P(h|d) (7.5)

As before, a7 < 1 implies insensitivity to the likelihood; in addition, ap < 1 implies insensitivity to the
prior (base rate neglect). Grether'” referred to the case in which a7 > ap > 0 as the representativeness
hypothesis.

In the special case where a7, = 1 and ap = 0, the posterior is simply the normalized likelihood. This
corresponds to the model of representativeness judgments proposed by Tenenbaum & Griffiths #4° in the
case where there are two mutually exclusive hypotheses. This model accounts for why two observations can
have the same likelihood but differ in their perceived representativeness. For example, a fair coin is equally
likely to generate the sequences HHHH and HTHT (where “H” denotes heads and “T” denotes tails), but
people intuitively perceive the latter sequence as more representative of a fair coin. Similarly, people per-
ceive “being divorced 4 times” as more representative of Hollywood actresses than “voting Democractic,”
even though the latter has a higher likelihood +*.

The model put forward by Tenenbaum and Griffiths formalizes the idea that representativeness is tied
to diagnosticity: the extent to which the data are highly probable under one hypothesis and highly improb-
able under an alternative hypothesis. Gennaioli & Shleifer ™ offered a different formalization of represen-
tativeness that also captures the notion of diagnosticity. They model probability judgments based on con-
sideration of data that are accessible in memory see also“>. Judgmental biases arise when an agent engages
in “local thinking” (retrieving data from memory based on its diagnosticity). This resonates with modern

theories of episodic memory, which posit that the retrievability of information is related to its distinctive-
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ness; under the assumption that information is stored and/or retrieved probabilistically, distinctiveness
is directly related to diagnosticity**>*2. Consistent with the diagnosticity hypothesis, Fischhoff & Bar-
Hillel *7 showed greater under-reaction to the evidence when diagnosticity was higher see also™*. How-
ever, a meta-analysis by Benjamin * showed that most studies actually find the opposite pattern: under-
reaction to the evidence is positively correlated with diagnosticity. One goal of our theoretical account is
to resolve this discrepancy.

While much of the work on under-reaction to the prior discussed above was largely driven by findings
in more ‘realistic’ scenarios, such effects are also found in more laboratory-controlled paradigms like those
in Peterson & Miller*" and Edwards??. In particular, when the parameters of the model in Equation 7.5
are fit to behavioral data from studies using such laboratory-controlled stimuli, the value of ap is generally
between o and 1 - indicating that subjects sometimes under-weight the prior in these cases as well, but
do not neglect it completely®. This formulation therefore allows for the case where both ap and a;, are
less than 1, corresponding to a version of the “system neglect” hypothesis proposed by Massey & Wu 7:
both the likelihood and prior are neglected, producing an overall insensitivity to variations in the data-
generating process. An important implication is that the two forms of under-reaction are compatible (one
can under-react to both the likelihood and the prior) and could potentially be explained by a unified model,
with similar mechanisms acting across these different domains. A goal of our theoretical account is to
understand when under-reaction occurs and when such under-reaction to one source is more prominent
than under-reaction to the other.

In summary, the literature on probabilistic belief updating has produced evidence for under-reaction
to both prior probabilities and evidence. We now turn to the development of a theoretical account that

will explain several aspects and properties of these and other errors.

7.3 LEARNING TO INFER

To understand why people make inferential errors, we need to start by understanding why inference is
hard, and what kinds of algorithms people could plausibly use to find approximate solutions. We will

therefore begin this section with a general discussion of approximate inference algorithms, identify some
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limitations of these algorithms (both computationally and cognitively), and then introduce the learning ro
infer framework, which addresses these limitations. This framework provides the basic principles needed

to make sense of under-reaction.

7.3.1 APPROXIMATE INFERENCE

The experiments discussed above involved very simple (mostly binary) hypothesis spaces where Bayes’ rule
is trivial. But in the more realistic domains that humans commonly confront, the hypothesis space can be
vast.

For example, consider a clinician diagnosing a patient. A patient can simultaneously have any of N
possible conditions. This means that the hypothesis space contains 2N hypotheses. Or consider the seg-
mentation problem, faced constantly by the visual system, of assigning each retinotopic location to the
surface of an object. If there are K objects and N locations, the hypothesis space contains K™ hypotheses.
Such vast hypothesis spaces render exact computation of Bayes’ rule intractable, because the denomina-
tor (the normalizing constant, sometimes called the partition function or marginal likelihood) requires
summation over all possible hypotheses.

Virtually all approximate inference algorithms address this problem by circumventing the calculation

140

of the normalizing constant™°. For example, Monte Carlo algorithms® approximate the posterior using

M weighted samples {h!, ... "M}

M
P(hld) = > w"I[h"™ = h], (7.6)
=1

where w” is the weight attached to sample m, and I]-] = 1 if its argument is true (o otherwise). Markov
chain Monte Carlo algorithms, generate these samples from a Markov chain whose stationary distribu-
tion is the posterior, and the weights are uniform, w” = 1/M. The Markov chain is constructed in such
a way that the transition distribution does not depend on the normalizing constant. Importance sam-

pling algorithms generate samples simultaneously from a proposal distribution P(h), with weights given

by w" = P(d|h"™)P(h™)/P(h™).
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Most cognitive theories of approximate inference have appealed to some form of Monte Carlo sam-
pling, for several reasons. First, they can explain response variability in human judgments as arising from
randomness in the sampling process 87468149  Second, they can explain a wide range of inferential errors,
ranging from subadditivity to the conjunction fallacy**>7. Third, they can be implemented in biologically
plausible circuits with spiking neurons #3792,

Monte Carlo algorithms can be thought of as procedures for generating an approximate posterior Q,, (4|d)
parametrized by the set of weights and samples, ¢ = {w", " }¥_  The superset @ of all feasible sets (i.e.,
the sets that can be produced by a particular Monte Carlo algorithm) defines an approximation family.

This leads us to a more general view of approximate inference as an optimization problem: find the ap-

proximation (parametrized by ¢ € @) that gets “closest” to the true posterior,

¢" = argmin D[Q, (h|d)||P(h|d)], (7.7)
ped

where dissimilarity between the two distributions is measured by a divergence functional D. Most Monte
Carlo algorithms do not directly solve this optimization problem, butinstead randomly sample ¢ such that,
in the limit M — oo, they produce ¢*. It is however possible to design non-randomized algorithms that
directly optimize ¢**° in a sample-based approximation. Such optimization is an example of variational
inference“s, because the solution can be derived using the calculus of variations. The most commonly
used divergence functional is the Kullback-Leibler (KL) divergence (also known as the relative entropy):

Oy (h]d)

Dua 0o M) IP(H)] = 3 0 e og 7

(7.8)

The variational optimization view of approximate inference allows us to consider more general ap-
proximation families that go beyond weighted samples. In fact, the approximate posterior can be any
parametrized function that defines a valid probability distribution over the relevant hypothesis space. For
example, researchers have used deep neural networks as flexible function approximators #»*453%3%5:341 From
a neuroscience perspective, this approach to approximate inference is appealing because it lets us con-

template complex, biologically realistic approximation architectures provided that the optimization pro-
1% P gically pp p P p
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cedures can also be realized biologically; see 48 For example, particular implementations of variational

inference have been used to model hierarchical predictive coding in the brain 459,

7.3.2 AMORTIZATION

Most approximate inference algorithms are memoryless: each time the system is queried (i.e., given data
and asked to return the probability of a hypothesis or subset of hypotheses), the inference engine is run
with a fresh start, oblivious to any computations it carried out before. This has the advantage that the
algorithm will be unbiased, and hence with enough computation the parameters can be fine-tuned for the
current query. But memorylessness can also be colossally wasteful. Consider a doctor who sees a series
of patients. She could in principle recompute her posterior from scratch for each set of observed symp-
toms. However, this would fail to take advantage of computational overlap across diagnostic queries,
which would arise if multiple patients share symptom profiles. To address this problem, computer sci-
entists have developed a variety of amortized inference algorithms that reuse computations across multiple
queries 82,241,310,368,341,441,104,473,378,293

To formalize this idea, let the data variable d subsume not only the standard “observation” (e.g., symp-
toms in the diagnostic example) but also the information provided to the agent about the generative model
P(d, h) and the subset of the hypothesis space being queried (e.g., a particular diagnostic test, which is a
subset of the joint diagnosis space). In the “classical” approximate inference setting, the inference engine
computes a different approximate posterior for each query, with no memory across queries. In the amor-
tized setting, we allow sharing of parameters across queries (Figure 7.1). Optimizing these parameters in-
duces a form of memory, because changes to the parameter values in response to one query will affect the
approximations for other queries. Put simply, the amortized inference engine learns to infer: it generalizes
from past experience to efficiently compute the approximate posterior conditional on new data.

The optimization problem in the amortized setting is somewhat different from the classical setting. This

is because we now have to think about a distribution of queries, P(¢). One way to formalize this problem
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Figure 7.1: Schematics of different inference methods. (A) Memoryless inference recomputes the variational parameters
@ from scratch for each new set of observations, resulting in an approximate posterior Q(ﬂ that is unique for each d. (B)
Amortized inference allows some variational parameters to be shared across queries, optimizing them such that Q¢ is a good
approximation in expectation over the query distribution. (C) Schematic of how we implemented this framework with a neural
network function approximator in the Learned Inference Model, with low capacity (1 hidden unit). (D) Schematic of a neural
network function approximator in the Learned Inference Model, with high capacity (5 hidden units).
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Figure 7.2: Schematic demonstration of how the approximate posterior depends on the query distribution. (A) The true
posterior probability P (indicated by colors on the heatmap), as a function of the prior and likelihood for a generative model
in which 1 ~ Bernoulli(pg) and d|/ ~ Bemoulli(p;). The contour lines depict the query distribution. (B) The approximate
posterior ) computed by the Learned Inference Model, averaged over the query distribution. The approximation is better for
areas that are sufficiently covered by the query distribution. (C) The average KL divergence between the true and approximate
posteriors. Higher divergence occurs in areas that are covered less by the query distribution.

is to define it as an expectation under the query distribution Pgyery(d):

¢" = argminEp, . {D[Q,(h|d)||P(h|d)]} (7.9)
ped

Under this objective function, high probability queries will exert a stronger influence on the variational
parameters (see Figure 7.2 foran illustration). Note that Pyuery (d) need not be identical to the true marginal
probability of the data under the data-generating process, P(d). For example, a child might ask you a series
of questions about the reproductive habits of squirrels, but observations of these habits might be rare in
your experience.

It is important to note that classical (non-amortized) approximate inference is a special case of amor-
tized inference, and if there are no constraints on the amortization architecture, then the optimal architec-
ture will not do any amortization. This means that amortization only becomes relevant when there are
computational constraints that force sharing of variational parameters—i.e., limitations on the function
approximator’s capacity. A key part of our argument is that the brain’s inference engine operates under

1IL,$

such constraints see™’, which will produce the kinds of inferential errors we wish to explain.
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7.3.3 THE LEARNED INFERENCE MODEL

We implement a specific version of this general framework, which we refer to as the Learned Inference
Model (LIM). This model uses a three-layer feedforward neural network as the function approximator (see
Figure 7.1 C-D, further details can be found in Appendix A.2). The inputs are all the relevant information
about the query subsumed by the data variable d, and the outputs uniquely determine an approximate
distribution O, (%|d) over all hypotheses /. For example, if we want to model the posterior distribution
P(h|d) as a Bernoulli distribution over two hypotheses, then the inputs are the prior probabilities of the
two hypotheses, the likelihood parameters, and observed data, while the output is a Bernoulli parameter
that represents the approximate posterior. The same parameters of the network ¢ are used to generate the
approximate distributions O, (%|d) for all queries d (i.e., the approximation is amortized; Figure 7.1 A-B).
The network encounters a series of queries d and outputs a guess for O, (h|d). This guess is improved in
response to each new d, with updates to the network parameters ¢. This leads to query dependence (Figure
7.2) in the learned parameters ¢, and therefore in the approximation Q,, (h|d). The updates to ¢ are made
using an algorithm that performs that performs the optimization in Equation 7.9 using knowledge only of
the joint distribution as a learning signal (see Ranganath et al.**, also discussed in Chapter 3, for details).
Since the joint distribution is known, no external feedback is necessary for learning.

These implementational details were chosen for simplicity and tractability. Because many other choices
would produce similar results, we will not make a strong argument in favor of this particular implementa-
tion. For our purposes, a neural network is just a learnable function approximator, utilizing the memory
of previously sampled experience to approximate future posteriors. Several other memory-based based
process models for probability judgment for example: 9474437295 could also learn to infer. Nonetheless,
the implementation fulfills several intuitive desiderata for a psychological process model. First, feedfor-
ward neural networks have been widely used to model behavioral and neural phenomena. Most relevant
to the present approach is the work of Orhan & Ma**, who showed how generic neural networks could
be trained to implement probabilistic computation. These architectures can also act as universal function
approximators, allowing us to refrain from strong assumptions about the functional form of the inference

procedures it will learn, while simultaneously retaining reasonable generalization properties and protec-
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tion from too much overfitting, despite high expressivity489’3z4. Second, neural networks offer a natural
way to specify the computational bottleneck in terms of a convergent pathway (the number of hidden
units is smaller than the number of input units)”. Such convergence has played an important role in the-

135, Third, the learning rule (blackbox variational

orizing about other forms of cognitive bottlenecks e.g.,
inference) can be applied incrementally, and does not require knowledge of the posterior normalizing con-
stant, making it cognitively plausible. Fourth, as we discuss later, the model can be naturally integrated
with Monte Carlo sampling accounts of approximate inference.

All model parameters (number of hidden units in the bottleneck, the architecture of the network, prop-
erties of the optimization algorithm, etc.) are fixed across almost all the experiments (see Appendix A.2 for

details); any exceptions are noted where relevant. All the key predictions our model makes are qualitative

in nature, and do not require fitting of free parameters to empirical results.

74 UNDERSTANDING UNDER-REACTION

We now apply the Learned Inference Model to our motivating question: what is the origin of under-
reaction to prior probabilities and evidence? We argue that these inferential errors arise from an amortized
posterior approximation. There are two key elements of this explanation. First, the amortized approxi-
mation has limited capacity: it can only accurately approximate a restricted set of posteriors, due to the
fact that the approximation architecture has a computational bottleneck (in our case, a fixed number of
units in the hidden layer). We will see how this leads to overall under-reaction to both priors and evidence.
Second, the particular posteriors that can be accurately approximated are those that have high probability
under the query distribution. We will see how this leads to differential under-reaction to either prior or ev-
idence. In this section, we will focus on the first element (limited capacity), since most of the experiments

that we focus on use near-uniform query distributions. We address the second element (dependence on

“In this parallel, the network in our LIM is not intended to represent an actual network of neurons in the brain
per se, and the convergent bottlenecks induced are not intended as a literal number of neurons in a natural neural
network. Real networks in the brain receive information in much higher dimensional format, where the relevant
variables are yet to be isolated. Further, they have to cope with noise on these inputs, in the learning signal, and the
even the neurons themselves are stochastic. Our model is a highly idealized version of the computations underlying
probabilistic judgment, and specifics like the number of units in the bottleneck or the number of layers etc. cannot
be directly compared to biologically realistic analogs.
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the query distribution) in subsequent sections.

Benjamin * presented a meta-analysis of studies using the classical balls-in-urns setup, or similar setups
(e.g., poker chips in bags). For simplicity, we will use the ball-in-urns setup to describe all of these studies.
Subjects are informed that there are two urns (denoted R and B) filled with some mixture of blue and red
balls. On each trial, an urn / is selected based on its prior probability P(/), and then adatasetd = (N, Np)
of N, red balls and N, blue balls is drawn from P(d|4) by sampling N = N, + N}, balls with replacement
from urn /. The subject’s task is to judge the posterior probability of urn R, P(h = R|d). Urn R contains
mostly red balls (red-dominant), and the urn B contains mostly blue balls (blue-dominant). Following
Benjamin *, we focus on symmetric problems, where the proportion of the dominant color in both urns is
denoted by 6, which is always greater than 0.5. We can also interpret 6 as the diagnosticity of the likelihood:
when 0 is large, the urns are easier to tell apart based on a finite sample of balls.

In formalizing a model for subjective performance on this task, Benjamin * follows Grether 7" in allow-
ing separate parameters for sensitivity to the likelihood and the prior (Eq. 7.5). For analytical convenience,

this model can be reformulated as linear in log-odds:

P(h = R|d) P=R) | Pl =

_ ( )
8 P = Bla) ~ "% Pl = ) +e (710)

P(dlh = B)

where we have included a random response error term €. This formulation allows us to obtain maximum
likelihood estimates ap and @y, using least squares linear regression applied to subjective probability judg-
ments (transformed to the log-odds scale). Benjamin* first restricted the meta-analyses to studies with
equal prior probabilities across the hypotheses, such that ap is irrelevant. The estimates of a; revealed
three main findings: (i) Under-reaction to the likelihood is more prevalent (6, < 1); (ii) the extent of
under-reaction to the likelihood is greater (a, is lower) with larger sample size (high N); and (iii) the extent
of under-reaction is greater with higher diagnosticity (higher ) of the likelihood.

We investigated whether the Learned Inference Model can capture these findings. For each experimen-
tal condition, collected from 15 experiments, we trained the model with 2 hidden units on the same stimuli
presented to subjects. The conditions varied in likelihood diagnosticity (6) and sample size (N). We addi-

tionally include some uniformly random sample sizes and diagnosticities in training as a proxy for subjects’
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Figure 7.4: Simulation of inferential errors in binary symmetric problems with non-uniform priors. P(h|d) represents
true posterior probabilities, O(%|d) represents subjective posterior probabilities. Plots show prior log-odds on the x axis, and
the subjective prior log-odds calculated as the subjective posterior log-odds adjusted for subjective response to the likelihood
(as modulated by & ). (A) Data aggregated by Benjamin 25 (B) Simulation with low-capacity (2 hidden nodes) Learned
Inference Model. (C) Simulation with high-capacity (8 hidden nodes) Learned Inference Model. The shaded curves show the
linear and nonlinear (LOESS) regression functions with 95% confidence bands.

ability to simulate other possible values for these query parameters, apart from the small set of specific ones
chosen by the experimenters’. We found that the Learned Inference Model could successfully reproduce
the 3 main findings from the Benjamin * meta-analysis (Figure 7.3).

We also applied the model to experiments in which the prior distribution was non-uniform (deviated
substantially from 0.5). Figure 7.4 shows data aggregated by Benjamin * along with model simulations,
demonstrating that both people and the model tend to be insufficiently sensitive to the prior odds (ap <
1), consistent with base rate neglect.

We have shown that several of the main findings in the Benjamin * meta-analysis of inferential errors
can be reproduced by the Learned Inference Model with limited capacity. We now build an intuition for
how the model explains these phenomena. The key idea is that limited capacity forces the model to sacrifice

some fidelity to the posterior, producing degeneracy: some inputs map to the same outputs see>”’ for a

"Crucially however, the stimuli actually used in the experiment are much better represented in the query dis-
tribution during training — leading to differences in the predictions made by the Learned Inference Models trained
on different query distributions from each experiment. The uniformly random inputs primarily serve to add some
noise to prevent the Learned Inference Model from overfitting in cases where the experimental stimuli only query a
very small number of unique sample sizes and diagnosticities.
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Figure 7.5: Simulations of inferential errors with high capacity and a biased query distribution. P(h|d) represents
true posterior probabilities, Q(h|d) represents subjective posterior probabilities. (A) Simulation of high-capacity (8 hidden
units) Learned Inference Model. (B) Simulation of low-capacity (2 hidden units) Learned Inference Model with biased query
distribution. Left: subjective posterior log-odds vs. Bayesian posterior log-odds. Middle: estimated sensitivity to the likelihood
oy, vs. sample size N. Right: estimated sensitivity to the likelihood vs. diagnosticity £. The shaded curves show the linear
and nonlinear (LOESS) regression functions with 95% confidence bands.

similar argument. This degeneracy can be seen in Figure 7.3, where posterior log-odds greater than +s or
less than -5 are mapped to almost the same approximate log-odds value. Degeneracy causes under-reaction
overall to sources of information (like sample size, prior and likelihood). It also causes the approximate
posteriors at extreme log-odds to suffer relatively greater deviations from the true posterior, in particular
greater under-reaction to sources of information when the log-odds are extreme (e.g., with larger sample
sizes and more diagnostic likelihoods). Intuitively, degeneracy causes the model to have a relatively flat
response as a function of the posterior log-odds, which means that deviations will also increase with the

posterior log-odds.
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To demonstrate that these biases in our model are indeed caused by limited capacity in the network, we
repeated the same simulations with greater capacity (8 hidden units instead of 2). In this case, we found
that the approximate posterior mapped almost exactly to the true posterior (Figure 7.5A, left). Estimated
sensitivity to the likelihood (ay) across all diagnosticities and sample sizes was very close to the Bayesian
optimal of 1 (Figure 7.sA middle and right). We also found that higher capacity mostly abolished base rate
neglect (Figure 7.4C).

What information is lost by a limited capacity approximation depends on the query distribution. To
examine this point more closely, we simulated the Learned Inference Model (with 2 hidden units) trained
on a biased query distribution, where the likelihood parameters, prior probabilities and sample sizes were
the same as used in training previously, but the queries were manipulated such that 90% of the time the
data were uninformative about which urn is more likely—i.e., the difference in the number of red and blue
balls was close to zero. The query distribution therefore is very peaked around zero likelihood log-odds. We
then tested the model on the same queries simulated in Figure 7.3. As shown in the left panel of Figure 7.5B
(note the change in y axis scale), the approximation is still close to Bayes-optimal near zero posterior log-
odds, but the extent of degeneracy is overall far greater, with all the true posterior log-odds being mapped
to approximate posterior log-odds roughly between -1 and +1. This results in much greater under-reaction
overall. This is also reflected in Figure 7.5sB, middle and right, where the estimated sensitivity a, is closer

to zero.

7.4.1 THE EFFECT OF SAMPLE SIZE

In this section, we consider the effect of sample size on the posterior distribution in greater detail, keeping
the prior and likelihood parameters fixed. The most systematic investigation of sample size was reported
by Griffin & Tversky '7®, who suggested a specific decomposition of the posterior log-odds into the strength
(sample proportion) and the weight (sample size) of the evidence. These are two sources of information
that inform the posterior, and we can consider how strongly participants react to these the same way we
consider their reactions to the prior and evidence in the previous section.

In one of their studies, they gave subjects the following instructions:
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Table 7.1: Stimuli used in Griffin & Tversky '"®.

Imagine that you are spinning a coin, and recording how often the coin lands heads and
how often the coin lands tails. Unlike tossing, which (on average) yields an equal number of
heads and tails, spinning a coin leads to a bias favoring one side or the other because of slight
imperfections on the rim of the coin (and an uneven distribution of mass). Now imagine
that you know that this bias is 3/5. It tends to land on one side 3 out of 5 times. But you do

not know if this bias is in favor of heads or in favor of tails.

After being shown different sets of coin “spin” results that varied in the number of total spins and the
number of observed heads (see Table 7.1), subjects were then asked to judge the posterior probability that
the coin was biased towards heads rather than towards tails.

The two hypotheses in this task were that the biased coin either favors heads (denoted 4 = A4) or that
it favors tails (denoted # = B). The prior probabilities of both hypotheses were equal. The symmetric
binomial probability was fixed at § = 3/5, and the observed datad = (N,, Nj) is the number of heads
(Ng) and number of tails N. The posterior log-odds can then be written as:

P(h=Ald) (N,—Np 0
i~ (M) (7). 7

where N = N, + N},. Taking the log of this equation results in a linear function relating the log of the

posterior log-odds to evidence “strength” log (N“;/N”) and “weight” log N. Following Grether 7, Griffin
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& Tversky 176 allowed each component to be weighted by a coeflicient (ay for evidence weight, ag for
evidence strength), absorbed all constants into a fixed intercept term ag = loglog (1%99) , and allowed for

random response error &, arriving at the following regression model:

log <log m) = ag + awlog(N) + aslog <NaNNb> + &. (7.12)
The Bayes-optimal parametrization is ay = as = 1. However, Griffin & Tversky”6 found that both
aw and ag significantly smaller than 1. Furthermore, subjects tended to be less sensitive to the weight
(aw = 0.31) compared to the strength (a5 = 0.81).

We now turn to predictions from the Learned Inference Model. The actual stimuli presented to sub-
jects in the original experiment were only a small subset of the possible data from the generative model
implied by the instructions. Similarly to the previous section, we partially pre-trained the network with
random samples from the generative model as follows: we sample the sample sizes from the set of stimuli
used in the original experiment (Table 7.1), but did not fix the number of observed heads, which we sam-
pled randomly from the generative distribution instead. This can be thought of as offline training on the
generative process, which seems plausible based on the instructions given to the subjects, ans serves to reg-
ularize the Learned Inference Model by preventing overfitting. We then trained exclusively on the specific
stimuli used in the original experiment, and carried out our analyses on the model’s response to each query
in Table 7.1.

Consistent with the experimental results, we found that the model was sub-optimally sensitive to both
sources of information (Figure 7.6), with both ég and &y being less than 1. We also found that it was more
sensitive to the strength than the weight (s = 0.67, ay = 0.48).

Greater sensitivity to strength than to weight in our model can be explained by considering the amount
of variance explained by each of these variables. We took random samples from the generative model and
measured how much of the variance in the log of the true posterior log odds can be explained by the log
of the strength and the log of the weights separately. We found that the strength variable explains more
of the variance in the true posterior than the weight variable (Figure 7.7A). A resource-limited approxima-

tion such as our Learned Inference Model picks up on this difference during pre-training and preferentially
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Figure 7.6: Strength and weight in probabilistic judgment. (A) Regression coefficients reported in Griffin & Tversky '"®. (B)
Regression coefficients estimated from simulations of the Learned Inference Model. Error bars represent the standard error
of the mean.

attends to the more informative source (i.e., the one that explains more of the variance). Moreover, we car-
ried out these regressions with the specific stimuli used in the the experiment and found that this difference
was exaggerated (Figure 7.7B), with the weight variable explaining very little of the variance in the true pos-
teriors. Training and evaluation on a distribution where the weight explains so little of the variance in the

posterior leads the model to react to the weight even less.

7 4.2 MANIPULATING THE QUERY DISTRIBUTION

In this section, we focus more directly on the role of the query distribution. A basic prediction of our
model is that it will put more weight on either the prior or the likelihood, depending on which of the two
has been historically more informative about the true posterior. We test this prediction empirically in a new
experiment by manipulating the informativeness of the prior and the likelihood during a learning phase,
in an effort to elicit over- and under-reaction to data in a subsequent test phase that is fixed across exper-
imental conditions. Specifically, informativeness was manipulated through the diagnosticity of different
information sources. In the informative prior/uninformative likelihood condition, the prior probabilities
were more diagnostic across queries than the likelihoods, whereas in the uninformative prior/informative

likelihood condition, the likelihoods were relatively more diagnostic.
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Figure 7.7: Variance explained by strength and weight independently. These plots show regressions between the log of the
strength or weight of the evidence against the log of the posterior log-odds. (A) For samples drawn from the true generative
process, the strength explains more variance in the posterior. (B) For the stimuli used in Griffin & Tversky '’®, the weight
explains almost none of the variance in the log posterior log-odds, whereas the strength explains a much higher amount of the
variance.

SUBJECTS

We recruited 201 subjects (93 females, mean age=34.17, SD=8.39) on Amazon Mechanical Turk. Subjects
were required to have at least 100 past completed studies with a historical completion rate of 99%. The
experiment took 12 minutes on average and subjects were paid $ 2 for their participation. The experiment

was approved by the Harvard Institutional Review Board.

DESIGN AND PROCEDURE

Subjects were told they would play 10 games with 10 trials each, in which they had to guess from which of
two urns a ball was sampled (i.e., which urn was more probable a posteriori). On every round, they saw
a wheel of fortune and two urns (Figure 7.8). They were then told that the game was played by another
person spinning the wheel of fortune, selecting the resulting urn, and then randomly sampling a ball from
the selected urn. The wheel of fortune thus corresponded to the prior and the balls in the urns to the

likelihood on each trial. Subjects were told that each trial was independent of all other trials.
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Figure 7.8: Screen shots of urn experiment. (A) In the condition with informative priors and uninformative likelihoods, the
wheel of fortune had urn probabilities of 0.7, 0.8, or 0.9. The proportions of blue balls in the urns was 0.5 or 0.6. (B) In the
condition with uninformative priors and informative likelihoods, the wheel of fortune had urn probabilities of 0.5 or 0.6. The
proportions of blue balls in the urns was 0.7, 0.8, or 0.9.



Subjects were randomly assigned to one of two between-subjects conditions. One group of subjects
went through 8 blocks of 10 trials each with informative priors and uninformative likelihoods (Figure
7.8A); the other group went through 8 blocks of informative likelihoods and uninformative priors (Figure
7.8B). We manipulated the prior distribution by changing the number of options on the wheel labeled
“left” or “right”. 'We manipulated the likelihood by changing the proportions of two different colors in
both the left and the right urn. Both urns always contained 10 balls of the same colors and the proportion
of colors was always exactly mirrored. For example, if the left urn had 8 red balls and 2 blue balls, then the
right urn had 2 red and 8 blue balls. For the informative prior/uninformative likelihood condition, the
wheel of fortune had urn probabilities (and diagnosticities &) of 0.7, 0.8, or 0.9, and the proportions of
blue balls in the urns was 0.5 or 0.6. For the uninformative prior/informative likelihood condition, the
wheel of fortune had urn probabilities of 0.5 or 0.6, and the proportions of blue balls in the urns was 0.7,
0.8,0r0.9.

After the first 8 blocks, both groups of subjects went through the same test blocks. Each test block had
either informative priors or informative likelihoods, with their order determined at random. We hypoth-
esized that, if subjects learned to infer the posterior based on their experience during the training blocks,
subjects who had experienced informative likelihoods would be more sensitive to the likelihood than sub-

jects who had experienced informative priors, who would be relatively more sensitive to the prior.

BEHAVIORAL RESULTS

We fitted a regression to subjects’ responses (transformed to log-odds) during the test blocks following
Eq. 7.10. Thus, we entered the log-odds of the prior, the log-odds of the likelihood, the condition (coded
as ‘o’ for the informative prior condition, and ‘1’ for the informative likelihood condition), as well as an
interaction effect between condition and likelihood and between condition and prior.

As expected, subjects’ judgments were influenced by both the prior (ap = 0.77,¢ = 27.529,p <
.001) and the likelihood (a;, = 0.92, ¢t = 32.68, p < .001), indicating that they understand the key
components of the generative process and therefore recognize and represent both of these as relevant to

their final judgment. Crucially, subjects who had previously experienced informative priors reacted more
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Figure 7.9: Results of urn experiment. The y-axis shows estimates for the regression coefficients a;, and ap (see Equation
7.10), and the x-axis represents the experimental condition. (A) Subjects weighted the prior more in the informative prior
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informative likelihood condition as compared in the informative prior condition. Error bars represent the standard errors of the

regression coefficients.



strongly towards the prior than subjects who had experienced informative likelihoods (interaction effect
of condition X ap = 0.10,t = 2.44, p = .01, Figure 7.9A). Vice versa, subjects who had previously
experienced informative likelihoods reacted more strongly towards the likelihoods than subjects who had
experienced informative priors (interaction effect of condition x a; = —0.22,t = —=5.31,p < .001,
Figure 7.9B). Furthermore, when estimating individual regressions for both conditions, the reaction to the
prior was stronger than the reaction to the likelihood in the informative prior condition (ap = 0.88 vs.
or = 0.70, p < .001), whereas the reverse was true for the informative likelihood condition (ap = 0.78

vs. &, = 0.92,p < .001).

MODELING RESULTS

We trained the Learned Inference Model to predict the posterior probability for each of the two urns, given
the prior probability for each urn and the ratio of colored balls in each of the urns, and the color of the
observed ball. We trained 40 different “simulated subjects”, 20 in each condition, each of which observed
exactly the data that a subject in their condition had seen, and then tested them on the same test blocks
that human subjects went through. We applied the same regression to our Learned Inference Model’s judg-
ments that we applied to subject data. Our Learned Inference Model’s judgments were significantly influ-
enced by both the prior (ap = 0.27,¢ = 41.41, p < .001) and the likelihood (a7 = 0.69, ¢ = 104.98,
p < .001). Importantly, the simulated subjects in the informative prior condition reacted more strongly
toward the prior (interaction effect condition x ap = 0.60, t = 64.83,p < .001, Figure 7.9C), whereas
the simulated subjects in the informative likelihood condition reacted more strongly toward the likelihood
(interaction effect of condition X a7 = —0.41,¢# = —44.27,p < .001, Figure 7.9D). Estimating individ-
ual regressions for both conditions as before, the reaction to the prior was higher than the reaction to the
likelihood in the informative prior condition (ap = 0.80 vs. a; = 0.21, p < .001), whereas the reverse
was true for the informative likelihood condition (ap = 0.29 vs. oy = 0.71, p < .001). Our Learned

Inference Model therefore reproduces the behavioral findings observed in our experiment.
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7.4.3 MANIPULATING THE QUERY DISTRIBUTION BETWEEN VS. WITHIN SUBJECTS

The study reported in the previous section demonstrates that the weight of an information source (prior or
likelihood) is correlated with its diagnosticity. An additional implication of the Learned Inference Model
is that people will only be sensitive to the prior and likelihood if these parameters vary across queries during
training of the recognition model. If the parameters are relatively constant (even if very diagnostic), then
the recognition model will learn to “ignore” them. More precisely, the recognition modellearns to amortize
a fixed belief about the priors when they are held constant, and therefore will be relatively insensitive to
surprising changes in the prior. Thisimplication is relevant to aline of argument articulated by Koehler >4,
that base rates are only ignored when they are manipulated between rather than within subjects.

Several lines of evidence support Koehler’s argument. Fischhoft etal. ™ found greater sensitivity to base
rates using a within-subject design, and similar results have been reported by Birnbaum & Mellers** and
Schwarz et al. #°#, though see Dawes et al. 7% for evidence that base rate neglect occurs even using within-
subject designs. Ajzen* pointed out an asymmetry in the experiments of Kahneman & Tversky *#, where
individuating information was manipulated within subject and base rates were manipulated between sub-
jects. He suggested that this may have focused subjects’ attention on individuating information at the
expense of base rates. Using a full between-subjects design, Ajzen * found greater sensitivity to base rates,
consistent with a reduction in the relative salience of individuating information compared to the mixed
within/between-subject design.

For concreteness, we will consider this issue in the context of the well-known taxi cab problem, where
subjects were asked to answer the following question:

Two cab companies, the Blue and the Green, operate in a given city. Eighty-five percent of
the cabs in the city are Blue; the remaining fifteen percent are Green. A cab was involved in a
hit-and-run accident at night. A witness identified the cab as a Green cab. The court tested
the witness’ ability to distinguish a Blue cab from a Green cab at night by presenting to him
film sequences, half of which depicted Blue cabs, and half depicting Green cabs. He was
able to make correct identification in 8 out of 10 tries. He made one error on each color of
cab. What do you think is the probability (expressed as a percentage) that the cab involved

in this accident was Green?

Note that the prior in this case is fairly diagnostic: it strongly favors Blue cabs. However, several studies
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Figure 7.10: Base rate neglect within and between subjects. The y-axis shows the reaction to the prior as measured in
predictions from the Learned Inference Model, the x-axis shows the different conditions. Reaction to the prior here is measured
by the difference between the responses given to test queries in which the base rate was 85% and those in which the base
rate was 15%. Thus, a greater difference indicates a stronger reaction to prior information. The model simulations of the
within-subjects design show a stronger reaction to the base rates than the simulations of the between-subjects design (which
shows no reaction to the base rate at all). Both of these conditions produce under-reaction to the base rate compared to the
Bayes-optimal judgment.

of the taxi-cab and similar problems produced evidence for base rate neglect #*>*. These studies manip-
ulated the base rates in a between-subject design. In the taxi cab problem, this corresponds to telling one
group of subjects that 85% of the cabs are Blue and telling another that 85% are Green. Therefore, while
the prior information is diagnostic, as it appears to each subject, it never varies.

As mentioned above, Fischhoff et al. ™ found greater base rate sensitivity using a within-subject manip-
ulation of base rates in the taxi cab problem. Each subject was given two different base rates for the cab
problem. We simulate the condition in which the base rates were either 85% or 15%. The Learned Inference
Model reproduces the key finding of greater sensitivity to base rates using a within-subject design (Figure
7.10). In fact, the model exhibits total neglect of base rates in the between-subjects design, consistent with

285

previous findings reported by Lyon & Slovic?¥, though not all experiments show such extreme results.”

“The assumption that these are the only queries ever seen by participants would result in no covariance between
prior and posterior in the between-subject design (since the prior never varies). This would give total base-rate neglect.
This is an extreme assumption we make for illustrative purposes. More realistically, observing these queries simply
concentrates the query distribution in this space and reduces covariance between the prior and the posterior.
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The Learned Inference Model naturally explains the difference between experimental designs as a conse-
quence of the fact that limited capacity and biased query distributions cause the model to ignore sources
of information that do not reliably covary with the posterior.

The differences in historical query distributions for each subject as determined by the experimental de-
sign also sheds light on discrepancies in the effects of diagnosticity on the extent of under-reaction. Studies
that find that reactions to a source of information are stronger with increasing relative diagnosticity 7%
of that source of information, used between-subject designs. This is analogous to our study in which sub-
jects “attend” more to a source that was more informative in the experienced query distribution, leading to
a stronger reaction to that source in future queries. However, studies reported in Benjamin * find greater
under-reaction with increasing diagnosticity (Figure 7.3). We note that these studies predominantly used
within-subject designs,” in which the same subject has to make inferences across all levels of diagnosticity.
This leads to a much broader query distribution, where no source has reliably higher diagnosticity. Im-
posing a limitation on the capacity of the approximation results in an inability to faithfully express this
broad query distribution, and some neglect of the specific parameters*’. This produces degeneracies in
the response that manifest as greater under-reaction to more diagnostic sources of information. Our model
therefore is able to replicate these seemingly contradictory findings, by taking into account the experienced

query distribution of each subject.

7.4.4 EXTENSION TO A CONTINUOUS DOMAIN

In this section, we investigate the effect of informativeness in a continuous domain, re-analyzing a data
set reported by Gershman ™. Subjects (N = 117) were recruited through Amazon Mechanical Turk to
take part in an experiment in which they had to predict the pay-off of different slot machines. In total,
they were shown 10 different slot machines and had to make 10 guesses per slot machine. Pay-ofts varied
between o and 100 and were noisy such that no slot machine gave the same pay-off every time. Subjects
were assigned randomly to one of two groups in a between-subjects design. Each machine k was associated

with a Gaussian distribution NV (my, s) over outputs yy, on each trial n. The variance s was fixed to 25 and

“Two exceptions to this pattern are Sasaki & Kawagoe *° and Beach et al. ™.
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the mean was drawn from a normal distribution A (my, v), with m set to 40 and the global variance v
manipulated between groups. One group, in the low dispersion condition, experienced a global variance
of v = 36. The other group, in the high dispersion condition, experienced a global variance of v = 144.

Gershman ™ used this paradigm to show how manipulating the dispersion produced faster or slower
acquisition of abstract knowledge; we focus on a different aspect of the data here: subjects updating be-
havior. Figure 7.11A shows subjects’ reaction to the incoming data, quantified as how much they update
their predictions after observing a slot machine’s output, plotted against the predicted update of a rational
hierarchical model inferring the posterior mean payoffs for a machine.” Subjects’ updates are positively
correlated with the model’s predicted updates for both the high dispersion (#(99) = 0.57, p < .001)
and the low dispersion condition (#(116) = 0.36, p < .001). This is expected as the hierarchical model
is assumed to be a good first approximation of human behavior in this task. However, subjects updated
their beliefs much more in the high dispersion than in the low dispersion condition — even for the same
rational update (#(214) = 9.24, p < .001, after accounting for differences in rational updates between
the conditions). This means that they were affected more strongly by the same incoming evidence in the
high dispersion than in the low dispersion condition. As the higher dispersion group experienced a higher
global variance, this also means that they experienced a less informative prior. Thus, the fact that they
under-reacted to the prior when it is relatively less informative reproduces the effect observed in our urn
experiment in a continuous domain.

To simulate these findings, we parametrized the outputs of the Learned Inference Model to return the
mean and log standard deviation of a Gaussian posterior. The function approximator was a neural network
with a single two-unit hidden layer and a tanh non-linearity, taking as input the last observation, the mean
of the observations seen so far in that episode and the number of observations in that episode. We trained
the model on the same generative process as was applied in the behavioral study. We then use the model’s

predicted mean as the response on every trial.

“This rational hierarchical model is assumed to know the true parameter values for s, v and mg. However, in
this experiment, these parameters for the full data-generating process were not explicitly shown to participants. We
therefore also carry out an analysis using a hierarchical Bayesian model that additionally also infers these parameter
values. This leads to similar results; see Appendix A.3 for details.
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Figure 7.11: Inferential errors in a continuous domain. (A) Reanalysis of data from the payoff prediction task collected by
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standard error of the mean. Gray lines represent y = x.

The results, shown in Figure 7.11B, demonstrate that the model qualitatively matches the human data:
a positive correlation between the hierarchical model’s predictions and our Learned Inference Model’s
responses for both the low dispersion (7(19) = 0.82, p < .001) and the high dispersion condition
(r(19) = 0.82, p < .001), but critically the update was stronger for the high dispersion condition than
for the low dispersion condition (#(38) = 7.40,p < .001).

A discrepancy in the behavior of our model and the human data can be seen for large updates, where
the model predictions flatten out significantly compared to human data. This is due to the degeneracy
caused by limited capacity (see also figures 7.3 and 7.5). Different architectures and ways to parametrize
the approximate distribution Q would lead to different kinds of degeneracies and might better model this
aspect of the human data. Nonetheless, the effect we are primarily interested in in this study is that the
updates in the high dispersion condition are greater than in the low dispersion condition (for both our
model and the human data), for every value of the true Bayesian update. This validates our claim that
reaction to data depends on the relative informativeness of the prior and the likelihood in past queries.

This claim applies to both discrete and continuous domains.
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7.5 FURTHER EVIDENCE FOR AMORTIZATION: BELIEF BIAS AND MEMORY EFFECTS

We now shift from our analysis of under-reaction to a broader evaluation of the Learned Inference Model,
focusing on two predictions. First, the model predicts that the accuracy of human probabilistic judgment
will depend not only on the “syntax” of the inference engine (how accurately the inference engine ma-
nipulates probabilistic information) but also on the “semantics” (how well the probabilistic information
corresponds to prior experience and knowledge). The semantic dependence gives rise to a form of belief
bias, in which people are more accurate when asked to make judgments about “believable” probabilistic
information compared to “unbelievable” information, even when the syntactic demands (i.e., Bayes’ rule)
are equated. Second, the model predicts that there will be memory effects (sequential dependencies): one

probabilistic judgment may influence a subsequent judgment even when the two queries are different.

7.5.1 BELIEF BIAS

In studies of deductive reasoning, people appear to be influenced by their prior beliefs in ways that some-
times conflict with logical validity. Specifically, they tend to endorse arguments whose conclusions are
believable, and reject arguments whose conclusions are unbelievable, regardless of the arguments’ logical
validity e.g.,"*7#»#%22°_ This belief bias phenomenon has played a pivotal role in adjudicating between
theories of logical reasoning.

Belief bias has also been observed in probabilistic reasoning tasks'*®*. Here we focus on the study
reported by Cohen et al. ®¢, which varied whether the posterior probabilities dictated by Bayes’ rule were
close to independently measured intuitive estimates of the corresponding real-world probabilities. Sub-
jects were asked to perform Bayesian reasoning in real-world situations (e.g., medical diagnosis), with prior
and likelihood information that was either consistent with (believable condition), or inconsistent with
(unbelievable condition) observed real-world values. The authors found that subjects’ responses corre-
lated well with Bayesian posterior probabilities in the believable condition (Figure 7.12A), and were much
less correlated in the unbelievable condition (Figure 7.12B).

An intuitive interpretation for these results is that people anchor to the experienced real-world values of



the prior, likelihood, and resulting posterior, and adjust their computations inadequately to the parame-
ters actually presented in the query. The final responses are therefore closer to the true posterior when this
anchor is close to the experimental parameters presented, as in the believable condition. Anchoring has pre-
viously been modeled as the outcome of a resource-limited sampling algorithms”»*7*, but has usually been
studied in cases where the anchor is explicitly provided in the experimental prompt. Learned inference
strategies account for memory of previous queries, and provide a model for what such an anchor for a new
query could be, in the form of an « priori guess based on relevant past judgment experience. This interpre-
tation of learned inference as augmenting or anchoring other run-time approximate inference strategies is
discussed in greater detail in the section on Amortization as Regularization.

We model these effects by training the Learned Inference Model on a set of priors and likelihoods that
result in a particular posterior distribution, P4, and testing on a set of priors and likelihoods that result
in posterior probabilities that either have the same distribution P4 (believable condition) or a different
distribution Pg (unbelievable condition)”. The model produces responses that are highly correlated with
the true posterior probability in the believable condition (Figure 7.12C, » = 0.78, p < .001), but this
correlation is much lower in the unbelievable condition (Figure 7.12D, r = 0.14, p = .06, comparative
test: z = 2.64, p = .004). Our model therefore reproduces the belief bias effect reported by Cohen

etal. 4,

7.5.2 MEMORY EFFECTS

In our own previous work’#, we observed signatures of amortized inference in subjects’ probability es-
timates. One such signature was that their answers to a question (Q2) were predictably biased by their
answers to a previous question (Qr). This bias was stronger in cases were the two queries were more simi-

lar.

“Fach simulated subject received a training distribution where the posterior probabilities were distributed ac-
cording to the mixture distribution P4 = 0.5 x Beta(3, 1) +0.5 x Beta(1, 1). Simulated subjects in the believable
condition were tested on posteriors sampled from the same distribution, those in the unbelievable condition were
tests on posteriors sampled from the mixture distribution Py = 0.5 x Beta(1,3)+0.5 x Beta(1, 1). Anequal num-
ber of simulated subjects received Pg as the training distribution (with P as the test distribution in the unbelievable
condition).
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Figure 7.12: Belief bias. Top: experimental data. Bottom: simulations of the Learned Inference Model. (A) Empirical results
for the believable condition®. (B) Empirical results for the unbelievable condition. (C) Simulated results for the believable
condition. (D) Simulated results for the unbelievable condition. The correlation between the actual and estimated posterior is
closerto 1 (i.e., exact Bayesian inference) in the believable condition than in the unbelievable condition. The Learned Inference
Model reproduces this effect.



The experiments were carried out in the domain of scene statistics. We asked people to predict the
probability of the presence of a “query object”, given the presence of a “cue object” in a scene. The query
object was kept the same across both queries. In one condition, the cue object in Q1 was “similar” to the
one in Q2, measured by the KL divergence between the two posteriors over objects conditional on the cue
object. In the other condition, the cue object in Q2 was dissimilar from the one in Q.

For example:

Qr: “Given the presence of a chair in a photo, what is the probability of there also being a painting, plant,
printer, or any other object starting with a P in that photo?”

Q2 (Similar): “Given the presence of a book in a photo, what is the probability there is any object starting
with a P in the photo?”

Q2 (Dissimilar): “Given the presence of a road in a photo, what is the probability there is any object start-

ing with a P in the photo?”

We biased the responses to Qi for half the subjects using an unpacking manipulation, which produces
subadditivity of probability judgments. A subadditivity effect occurs when the perceived probability of a
hypothesisis higher when the hypothesisis ‘unpacked’ into a disjunction of multiple typical sub-hypotheses™»4¢%73,
Using an example from our own work, when subjects were told that there was a “chair” in the scene, they
tended to assign higher probability to the ‘unpacked” hypothesis “painting, plant, printer, or any other
object starting with a P”, than a control group who was asked about the ‘packed’ hypothesis “any object
starting with a P”. The true posterior is the same across these different conditions. Critically, we found
that the subadditivity group assigned higher probability to the hypothesis queried in Q2 than the control
group, holding fixed Q2 across groups. This means that the bias induced by Qr was detectable in Q2, in-
dicating that some computations involved in answering Q1 were re-used to answer Q2. Importantly, we
found that this bias was only detectable if the cue objects across Q1 and Q2 were similar (Figure 7.13A). For
example, first being asked Qr about the probability of the set of “objects starting with a P” in the presence
of a “book”, and afterwards being asked Q2 about the probability of “objects starting with a P” in the

presence of a “chair” produced a memory effect whereas asking the same Q2 did not show this memory
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Figure 7.13: Memory effect. (A) Observed subadditivity effect in query 2 reported in Dasgupta et al. *. Cues that were similar
to a previous query showed a higher effect than cues that were less similar, indicating strategic reuse of past computation. (B)

Simulated subadditivity effect. Provided that the model was trained to exhibit a subadditivity effect in a first query, this effect
remained stronger for similar queries than for dissimilar queries. Error bars represent the standard error of the mean.

effect when subjects in Q1 were asked about the probability of the set of “objects starting with a P” in the
presence of a “road”. We argued that this was a sign of intelligent reuse of computation, since a chair is
more likely to co-occur in scenes with a book than in scenes with a road.

In Dasgupta et al.7#, we modeled reuse using amortizations of samples in a Monte Carlo framework.
However, a basic problem facing this framework is that the Monte Carlo sampler cannot “know” about
similarity (measured in terms of KL divergence) without knowing the true posterior, which of course is the
entity it is trying to approximate. The Learned Inference Model provides an answer to this conundrum,
by adaptively amortizing (i.e., reusing) past computations without access to the KL divergence or other
omniscient similarity measures.

In the interest of simplicity, we simulate these effects in a smaller version of the original environment,
rather than using the full-scale scene statistics as in our original study”#. We simulated a data set of scene
statistics with 12 objects with 2 different “topics” that drive the multinomial probability distributions over
these 12 objects*. Using this setup, one can derive the joint probability of any 2 objects. The joint probabil-

¢3%° so we are able to train a larger version of the

ity is all that is required for blackbox variational inferenc
Learned Inference Model (with 1 hidden layer, 10 hidden units and a radial basis function non-linearity),

which takes as input each object d (a 12-dimensional one-hot vector) and outputs the 12-dimensional multi-
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nomial probability distribution P(/|d) over all objects.

We then manipulated P(%;, d) for a specific cue object d and query object /; by biasing it to be higher
than its true value (analogous to the subadditivity manipulation) and trained the Learned Inference Model
with the biased joint distribution for a few steps. This caused the model to partially amortize Q1, which
in turn influenced its answer to Q2 (a memory-based subadditivity effect), since the same network was
used to answer both. Our simulations demonstrate that the subadditive effect is significantly larger for
similar compared to dissimilar cue objects (Figure 7.13B; #(58) = 4.62, p < .001). Our model there-
fore reproduces the difference in the memory effect reported by Dasgupta et al.’#. Note however that
the simulations are carried out in a different generative model (i.e., a simplified version of the empirical
environment), and the sizes of the effects are not directly comparable.

Note that we did not attempt in this section to more directly model subadditivity, as this would require
the introduction of additional mechanisms into our framework. Prior work by Dasgupta et al. 7 suggests
how Monte Carlo sampling naturally explains subadditivity. As we address further in the General Discus-
sion, there are a number of ways that the Monte Carlo and amortized variational inference frameworks

could be integrated.

7.6 AMORTIZATION AS REGULARIZATION

We introduced amortization as a method for optimizing a function that maps queries to posterior distri-
butions. Another view of amortization is as a method for regularizing an estimator of the posterior distri-
bution for a single query. The intuition behind this is that one might have gained over experience some
knowledge of what the relevant task parameters and the resulting posteriors generally are, and use that to
regularize a noisy estimator for the posterior for a new query at run-time. At first glance, it may seem odd
to think about the variational optimization procedure as producing an estimator in the statistical sense,
since the posterior is a deterministic function of the query. To explain why this is in fact not odd, we need
to lay some groundwork.

An inference engine that is not bound by time, space or computational constraints will reliably output

the true posterior distribution, whereas a constrained inference engine will output an approximate poste-
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rior. There is no way for the constrained inference engine to know exactly how close its approximation is
to the true posterior. Another way of saying this is that the constrained inference engine has epistemic un-
certainty, even if the engine itself is completely deterministic and hence lacks any aleatory uncertainty (i.e.,
uncertainty arising from randomness).” We can thus regard the approximate posterior as an estimator of
the true posterior, and ask how we might improve it through the use of inductive biases: if we have some
prior knowledge about which posteriors are more likely than others, we can use this knowledge to bias the
estimator and thereby offset the effects of computational imprecision.

To formalize this idea in the context of amortized inference, the optimization problem in Eq. 7.9 can

be rewritten (up to an irrelevant constant factor) as follows:

¢" = argmin | D[Q, (h|d)||P(h|d)] +

——Ep,. {D[O,(hd)||P(hd)|d #d}|. (7.
g Pooe () Powry { D1Qo (RId)|[P(R )| # d}| . (7.13)

This expression separates a “focal” query d (the one you are trying to answer now) from the distribution
of other queries (d' # d). If the focal query is high probability, the second term counts less, and in the
limit disappears, such that the optimization problem reduces to fitting the variational parameters to the
focal query. When the focal query is low probability, the second term exerts a stronger influence, and in the
limit the optimization problem completely ignores the focal query. We can think of the second term as a
regularizer: it pulls the variational parameters towards values that work well (minimize divergence) under
the query distribution, and this pull is stronger when the focal query is low probability.

The regularization perspective allows us to connect our framework to the “correction prior” theory de-
veloped by Zhu et al. #92. According to Zhu and colleagues, the brain approximates the posterior by gen-
erating stochastic hypothesis samples, and then “corrects” this approximation by regularizing it towards a

meta-Bayesian prior over posteriors see also 3"

. The theoretical motivation for correction is that the poste-
rior approximation is a random variable due to the stochastic sampling process; when only a few samples
are drawn cf. #%7* this produces a noisy estimate of the posterior that may deviate significantly from the

true posterior. The correction procedure reduces variance in the posterior estimate by increasing bias,

*Epistemic uncertainty due to computational imprecision has been studied systematically in the field of proba-
bilistic numerics**.
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pulling it towards the meta-Bayesian prior over posteriors (intuitively, towards an ‘a priori’ guess based on
past experience), and therefore partially compensates for the error in the sampling process.

More formally, the stochastic hypothesis sampling procedure corresponds to a form of Monte Carlo
approximation (see Eq. 7.6). In the simple binary setting, H = {0, 1}, the Monte Carlo inference engine
generates M samples from P(h|d)". In our generic formalism, the approximate posterior is parametrized
by the proportion of “successes” ¢ = K/M, where K = )" T[h"™ = 1]. The approximate posterior is
then given by O, (h|d) = ¢" (1 — ¢)! ~". This approximation will exhibit large stochastic deviations from
the true posterior for small M.

To reduce the variance of the Monte Carlo estimator, Zhu et al. #** proposed a meta-Bayesian inference
procedure that computes the posterior over the optimal parameters ¢* given the “data” supplied by the

random variable ¢:

P(¢*|p) o< P(plo™)P(9"). (7.14)

When the prior P(¢*) is a Beta(A,B) distribution, the posterior mean estimator is given by:

B{o"lo} = wo+ (1 - W) (719

where w = controls the balance between the Monte Carlo estimate ¢ and the prior mean AAﬁ,

VT
which acts asa regularizer. Intuitively, a larger sample size (M) or weaker prior (4+-B) shift the balance from
the prior to the Monte Carlo estimate. When A = B, as assumed in Zhu et al. #°?, the prior mean is 1/2.
This gives rise to a form of “conservatism” in which probabilities greater than 1 /2 are underestimated, and

probeabilities less than 1 /2 are overestimated°**°°. We remind the reader that this form of conservatism is

distinct from the under-reaction that we modeled in previous sections, which is sometimes referred to as

“We assume for simplicity that the inference engine can directly sample from the posterior, though in most cases
of practical interest the inference engine will sample from a proxy distribution. For example, in Markov chain Monte
Carlo schemes, the inference engine samples from a Markov chain whose stationary distribution is the posterior 7>'4?.

"The variance of the Monte Carlo estimator for a binomial distribution with success probability p is p(1 —

p)/ M.
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conservative probability updating®?.

Zhu et al. #°* found evidence for such a “conservative” prior using two different data sets. The first one
was data collected by Costello et al. 68 who asked subjects to estimate probabilities for a range of weather
events (e.g., cold, windy or sunny), or to estimate probabilities of future events (e.g., “Germany is in the
finals of the next World Cup.”). The second one was data collected by Stewart et al. #7, who assessed
the variability of probability estimates for different phrases such as “improbably” or “quite likely”. The
sampling and correction prior model was able to quantitatively capture the observed conservatism effect:
people weighted their probability estimates towards 0.5 when providing their judgments (Figure 7.14A). It
alsoled to a novel prediction that the variance of probability estimates should be a quadratic function of the
true probability, with a peak at 1 /2. This prediction was confirmed in the experimental data (Figure 7.14B).

We now show that we can capture the same behavioral phenomena (mean and variance effects) using
the Learned Inference Model. This analysis provides an important insight: the random nature of the ap-
proximate posterior is not necessary (as in the correction prior framework), and that regularization, which
can act even on deterministic approximations (provided these approximations are capacity limited as in
the Learned Inference Model), can explain the observed effects.

To simulate the experimental data, we created a query distribution that would give rise to posteriors
distributed according to Beta(0.27,0.27), which Zhu and colleagues obtained by fitting their correction
prior to data on probability judgments collected by Stewartetal. 4. We then trained the Learned Inference
Model on queries sampled from this distribution. When tested on a range of queries, the trained model
replicated the conservatism effect in Figure 7.14C. Regressing the expected probabilities onto the models’
responses revealed an estimated slope of 0.54, which was significantly smaller than 1 (Wald test: = 14.49,
p < .001). This arises from regularization towards the mean response of 0.5. Zhu et al. #°* explained the
quadraticrelationship between the expectation and the variance as a feature of the sampling approximation.
However, our results demonstrate that the effect can arise even when the approximation is deterministic, as
long asitis capacity limited. The key observation is that the Learned Inference model contains degeneracies
in the mapping from true to approximate posterior and these degeneracies are more apparent further from

the mean. This increase in degeneracy results in lower variance at extreme probabilities. This can also be
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_A: Observed conservatism effect .B: Observed variance effect
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Figure 7.14: Correction prior. (A) Simulation results from the correction prior model in Zhu et al. *°2 exhibiting conservatism.
Black line represents the optimal response and the colored lines show estimates from different parameterizations of the model.
(B) Quadratic relation between the variance of subjective probability estimates and mean subjective probability estimates, as
observed by Zhu et al. ***. Points show data points from previous empirical studies. The line shows best fit quadratic fit to this
data. (C) The Learned Inference Model replicates the conservatism effect. Points represent mean estimates from our model,
the pink line represents the best fit linear regression to these points, the black line represents the optimal response. (D) The
Learned Inference Model replicates the variance effect. Points represent variance of the subjective responses from our model
for different mean subjective responses. The pink line represents the best fit quadratic fit to these points.
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interpreted as a bias-variance trade-off™ — the increased bias towards the mean response (conservatism) at
extreme probabilities causes the variance of the estimator to decrease.

Regressing the models predictions onto the simulated variance, we find thata quadratic model performs
better than an intercept-only model as also reported by Zhu et al. #%, F(1,19) = 78.73, p < .001 (Fig-
ure 7.14D). Solving the resulting quadratic regression for its maximum showed that this function peaked
at 0.498 (i.e., close to 0.5 as predicted by the correction prior). We conclude that our Learned Inference
Model can reproduce the conservatism and quadratic variance effects reported by Zhu et al. 42, but with-
out a stochastic sampling algorithm. In the General Discussion, we return to the relationship between

learning to infer and stochastic sampling.

7.7  GENERAL DiscuUssION

Although many studies suggest that the human brain is remarkably adept at carrying out Bayesian infer-

ence C.g.,182’251’246’331

, many other studies present evidence for systematic departures from Bayesian infer-
ence e.g.,176’25’233’234’175 . What does this mean for theories of probabilistic reasoning? Should we abandon
Bayesian inference as a descriptive model? Are people using Bayesian inference in some situations and
heuristics in others? These questions motivated our effort to formulate a new theory—learning ro infer.

The starting point of our new theory is the assumption that the brain must efficiently use its limited
computational resources'>?”. This assumption means that Bayes-optimality is zor the appropriate nor-
mative standard for probabilistic reasoning. Rather, we must consider how accuracy of probabilistic rea-
soning trades off against the computational cost of accuracy. A learning system that is trained to approx-
imate probabilistic inference will, when a limit on the computational cost is imposed (modeled here as
a computational bottleneck), exploit regularities in the distribution of queries. These regularities allow
the system to efficiently use its limited resources, but it will also produce systematic errors when answering
queries that are low probability under the query distribution. We showed that these are precisely the errors
made by people.

We implemented a specific version of this theory (the Learned Inference Model) using a neural network

function approximator, where the computational bottleneck corresponds to the number of nodes in the
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hidden layer. Our choice of neural network function approximator was motivated by a natural comple-
mentarity between the strengths of probabilistic generative models and neural networks. Neural networks
are best thought of as pattern recognition and function approximation tools, rather than as ways to rep-
resent causal knowledge about the world**°. In contrast, probabilistic generative models are good ways
to represent knowledge about causal structure, and define what problem we are trying to solve in infer-
ring hidden causes from data, but they do not specify good effective inference algorithms. By using neural
networks to learn to infer in a probabilistic generative model, a cognitive agent can combine the strengths
of these two approaches. Neural networks are used not to recognize patterns in the external world, but
patterns in the agent’s own internal computations: what kinds of observed data typically indicate that a
particular inference is appropriate?

The model reproduced the results of several classical and recent experiments in which people under-
react to probabilistic information. We first observed patterns in under-reaction predicted by limited capac-
ity. We then found that the model can reproduce sample size effects, in particular different reactions to the
strength and weight of evidence, by more strongly reacting to sources of information that have historically
been more diagnostic of the posterior. This led to the new predictions that under-reaction to the evidence
should occur when the queried posteriors covary more strongly with the prior than with the likelihood
(causing the function approximator to “attend” to more to the prior), whereas under-reaction to the prior
should occur when the queries covary more with the likelihood than the prior. We tested this prediction
in a new experiment that varied the structure of the query distribution, confirming that people make dif-
ferent inferential errors depending on the query distribution, even when all probabilistic information is
provided to them. We also applied the analysis of under-reaction to several other experimental factors,
such as sample size, between- vs. within-subject designs, and continuous hypothesis spaces.

The Learned Inference Model also provided insights into a range of other inferential errors. For exam-
ple, we showed how it could explain belief bias in probabilistic reasoning, the finding that people are closer
to the Bayesian norm when given probabilities that are consistent with their real-world knowledge ®*. Be-
lief bias arises, according to the model, because the function approximator has to make predictions about

the posterior in a region of the query space that it was not trained on. Another example is the finding of se-
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quential effects in probabilistic reasoning: a single query can bias a subsequent query, if the two posterior
distributions are sufficiently similar7#. This arises, according to the model, because learning in response
to the first query alters the function approximator’s parameters, thereby biasing the output for the second
query.

Finally, we showed how the Learned Inference Model offers a new realization for the correction prior
proposed by Zhu et al. #, according to which inferences are regularized towards frequently occurring
posterior probabilities. Taken together, these results enrich our understanding of how people perform
approximate inferences in computationally challenging tasks, which we can be accomplished by learning
a mapping between the observed data and the posterior. Our proposed Learned Inference Model is a

powerful model of human inference that puts learning and memory at the core of probabilistic reasoning.

7.7.1  RELATED WORK

Egon Brunswik famously urged psychologists to focus on the structure of natural environments, and the
corresponding structure of features that the mind relies on to perform inferences**. Herbert Simon pro-
posed the metaphor of the mind’s computations and the environment’s structure fitting together like the
blades of a pair of scissors, such that psychologists would have to look at both blades to understand how the
scissors cut*7. This interdependence between people’s strategies and their environments has been stressed
by psychologists for decades**, and our proposed Learned Inference Model fits well into that tradition.
Essentially, what we have argued for here is that subjects do not rely on a stable and fully rational engine for
probabilistic inference, but rather that they learn to infer—i.e., they optimize a computationally bounded
approximate inference engine, using memory to learn from previous relevant experience. Our proposal
emphasizes the importance of studying an agent’s environment, in particular the query distribution they
are exposed to. For example, whereas subjects who experienced informative priors in our urn experiment
ended up showing conservatism, subjects who experienced informative likelihoods showed base rate ne-
glect. Our proposal also stresses the importance of both memory (people re-use past computations) and
structure learning (people learn a mapping between observable and the posterior) to explain subjects’ prob-

abilistic reasoning more generally.
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The idea that memory plays an important role in inference has been studied by a number of authors.
For example, Thomas et al. #*° developed a theory of hypothesis generation based on memory mechanisms
see**? for an overview of this research program. Related ideas have also been explored in behavioral eco-
nomics to explain decision making anomalies**. Our contribution has been to formalize these ideas within
a computational rationality framework ™, demonstrating how a resource-limited system could adaptively
acquire inferential expertise, which would in turn produce predictable inferential errors.

Ours is not the first proposal to apply a neural network-based approach to explain how people reason
about probabilities. Gluck & Bower'® used an adaptive network model of associative learning to model
how people learned to categorize hypothetical patients with particular symptom patterns as having spe-
cific diseases. Their results showed that when one disease was far more likely than another, the network
model predicted base rate neglect, which they confirmed in subjects across 3 different experiments. This
is similar to our prediction that the Learned Inference Model will start ignoring the prior if it has been
historically less informative, for example because one disease has never appeared during learning. Using
a similar paradigm, Shanks*°7 showed that some versions of base rate neglect can be accounted for by a
simple connectionist model. Both of these studies, however, provided subjects with direct category feed-
back, whereas our Learned Inference Model only requires access to the joint probabilities, making it more
algorithmically plausible. Bhatia** showed how vector space semantic models were able to predict a num-
ber of biases in human judgments, including a form of base rate neglect based on typical and non-typical
descriptions of people and judgments about their occupations.

That the prior and the likelihood can be differentially weighted based on their importance has been
proposed before. For example, Koehler *#* argued that neither the base rate nor the likelihood are ever fully
ignored, but may be integrated into the final judgment differently, such that whether they are predictive
of the eventual outcome would influence the weight people place on them. The idea that people ignore
aspects of probability descriptions if they are not informative is a pivotal part of ecological definitions
of rationality, for example as part of the priority heuristic*®. In one exemplary demonstration of how
ignoring unpredictive information can be beneficial, Todd & Goodie #* simulated environments in which

base rates changed more frequently than cue accuracies, and found that models ignoring either the base
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rate or the likelihood could perform as well as their fully Bayesian counterparts.

7.7.2 INTEGRATING WITH SAMPLING-BASED APPROACHES
2?

Our theory relies heavily on a variational framework for thinking about the optimization problem that
is being solved by the brain’s approximate inference engine. This creates some dissonance with prevailing
ideas about approximate inference in cognitive science, most of which have been grounded in a hypoth-
esis sampling (Monte Carlo) framework see®" for a review, with small numbers of samples. Hypothesis
sampling has also been studied independently in neuroscience as a biologically plausible mechanism for ap-
proximate inference e.g.,”****. In our own prior theoretical work, we have employed hypothesis sampling
to explain a range of inferential errors’»7#. The question then arises of how (if at all) we can reconcile
these two perspectives — one of a variational approximation learned over several past experiences, versus
the other of a Monte Carlo approximation consisting of a handful of samples in response to the current
query. We discussed in broader terms the potential role of a learned inference model in augmenting predic-
tions from a noisy sampler as part of our section on ‘Amortization as Regularization’. We had discussed
this in broader terms in CHapter 3. Here we sketch a few more concrete possibilities for how these ap-
proaches might be combined to build new, testable models of human probabilistic inference.

Almost all practical Monte Carlo methods rely on a proxy distribution for generating samples. Markov
chain Monte Carlo methods construct a Markov chain whose stationary distribution is the true posterior,
often making use of a proposal distribution to generate samples that are accepted or rejected. Importance
sampling methods simultaneously draw a set of samples from a proposal distribution and reweight them.
Particle filtering methods apply the same idea to the case where data are observed sequentially. One nat-
ural way to combine variational inference with these methods is to use the variational approximation as a
proposal distribution. This idea has been developed in the machine learning literature e.g.,*"®, but has
not been applied to human judgment.

For Markov chain Monte Carlo methods, another possibility would be for the variational approxima-

tion to supply the initialization of the chain. If enough samples are generated, the initialization should
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not matter, but a number of cognitive phenomena are consistent with the idea that only a small num-
ber of samples are generated, thereby producing sensitivity to the initialization. For example, probability
judgments are influenced by different ways of unpacking the sub-hypotheses of a disjunctive query” or
providing incidental information that serves as an “anchor”?7%?7°. In these studies, the anchor is usually
provided as an explicit prompt in the experiment — learned inference strategies provide a model for what
such an anchor for a new query could be in the absence of an explicit prompt, in the form of an ‘a priori’
guess based on past judgment experience.

Several recent methods in the machine literature combine the complementary advantages of sampling

269,318,382 that could also

approximations and variational approximations leading to several new algorithms
be studied as models for human judgment.

The blackbox variational inference algorithm that we use (see Chapter 3) does in fact involve sampling:
the gradient of the evidence lower bound is approximated using a set of samples from the variational ap-
proximation. Although we are not aware of direct evidence for such an algorithm in brain or behavior,
the idea that hypothesis sampling is involved in the learning process is an intriguing possibility that has be-

gun to be studied more systematically 4746383 Tt resonates with work in other domains like reinforcement

learning, where people seem to engage in offline simulation to drive value updating ™54,

7.7.3 CONNECTIONS TO OTHER MODELS FOR JUDGMENT ERRORS

In addition to the sampling-based approaches that we discuss in the previous subsection, there may also
be other sources of probabilistic judgment errors in humans. Some of these include misinterpretation
or misunderstanding of the question being posed by the experimenter *°4, inability to map the provided
probabilities onto an intuitive causal model >4, or simply disbelief in the experimenter’s description of the
data-generating process.” We have restricted most of our attention to studies in which subjects had to rea-

son about data-generating processes that are explicitly described (e.g., how many balls of each color were

“While these models predict deviations from optimality, they do not always specify a model for the responses
actually produced, when participants do not understand, internalize, or believe the data-generating process presented
by the experimenter. One possibility is that they fall back upon ‘a priori’ notions of the data-generating process. Our
Learned Inference Model provides a model for what these context-sensitive ‘a priori’ beliefs might be — in particular
how these could be learned from past judgment experience.
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presentin an urn). Considerable evidence suggests that people’s judgments and decisions differ depending
on whether they have received a problem as a description or have experienced probabilities through expe-

rience *°»

296, These are all likely part of the explanation for the judgment errors discussed in this paper.
Below, we suggest a few ways in which predictions from our model could be integrated with, or distin-
guished from, predictions driven by these other mechanisms.

The Learned Inference Model in its current formulation assumes that the correct data-generating pro-
cess is provided in the query, and only learns how to do inference within this data-generating process. It
does not account for uncertainty about or disbelief in the data-generating process itself, and is insensitive
to whether information about it is acquired through description or learned from previous experience. One
could manipulate the amount of experience participants have with the data-generating process by letting
them observe samples from it within the experiment, rather than only providing them with a description
of the probabilities. This would manipulate the certainty participants have in the data-generating pro-
cess, and pave the way towards assessing its influence on probability judgments in these domains — inde-
pendent of the effects predicted by a Learned Inference Model which assumes perfect knowledge of the
data-generating process.

Domain knowledge and pre-experimental experience can also contribute to uncertainty about the pre-
sented data-generating process. Most of our results are from highly controlled domains (i.e., balls in urns),
that people likely do not have strong intuitions for based on past experience. Our findings in these do-
mains are modeled with inference strategies learned within the experiment. Considerable evidence shows
that people’s judgments and decisions are influenced by whether the data-generating process presented
matches pre-experimental intuitions about the causal structure of the real world»**. The Learned Infer-
ence Model in its current formulation has no notion of real-world causal structure, and therefore no intu-
ition about it. It can learn inference strategies from within-experiment experience in any data-generating
process irrespective of whether it respects such intuitions. Expanding our results to naturalistic settings,
where people might have ‘a priori’ causal intuitions from previous experience, would allow us to manipu-
late how ‘intuitive’ the presented data-generating process is and tease apart its role in judgment errors from

the predictions of the Learned Inference Model.
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Finally, we discussed in the previous section how learned inference strategies might be integrated with
memoryless sampling-based approaches that approximate responses at each query independently with a
small number of samples. We discussed this as a bias-variance trade-off in our section on ‘Amortization as
regularization’. A prediction of this framework is that the extent of such regularization will depend on the
amount of experience accrued in that domain, with more experience favoring a learned inference strategy
over memoryless stochastic sampling. Empirical results suggest that experts and novices employ differ-

ent decision strategies, with experts appearing to rely more on memory-based heuristics*7-**

%97, Studying
judgment errors across domains where participants vary in pre-experimental experience, or even over the
course of an experiment as within-experiment experience increases, would allow us to better understand
how learned and memoryless inference strategies interact and trade-off.

More broadly, our theory of learning to infer allows us to frame many of these errors in the context
of resource-rationality 7+, and explains how biases observed in the lab could be inevitable consequences
of algorithms that let resource-bounded minds solve hard problems in real time. Many of the alterna-
tive mechanisms for judgment errors suggested above have also been interpreted this way*7+?7>343, Our
model uniquely addresses how such biases could derive rationally from limited capacity inference strategies
learned from the history of past judgment experience. We leave many questions open for further investi-
gation, for example: how the mechanisms of learning to infer interact with other approximate inference
strategies; which of these phenomena are best explained by our approach as opposed to others, and under

what circumstances; and how previously proposed accounts in part might also be consequences of learned

inference strategies.

774 LIMITATIONS AND FUTURE DIRECTIONS

We modeled the mapping between queries and the posterior using a multilayer neural network. This model
does not assume any explicit representational structure; the mapping is optimized using blackbox varia-
tional inference, and many different mappings can be learned depending on the capacity of the neural
network. While this model provides a good first-order approximation of what the brain might be doing,

it remains to be seen whether the functional form we chose is the best relative to other possibilities. For
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example, our recent work on function learning suggests that people have a strong inductive bias for com-
positional functions—i.e., functions that can be built up out of simpler building blocks through algebraic
operations*°'.

Another limitation of our work is that we focused on cases where the posterior is defined over a sin-
gle random variable, but in the real world people frequently need to make inferences about subsets of
variables (or functions of those subsets) drawn from very large sets of variables with complex joint distri-
butions. This complexity was the motivation for our previous work on hypothesis sampling, which offers
a computationally tractable solution to this problem73. The memory-based subadditivity effects that we
modeled’# are an example of a phenomenon in which amortized inference and hypothesis sampling might
be unified, but we have not provided a comprehensive unification (though the previous section describes
some potential avenues). For example, although our model can capture the fact that more similar query
items can lead to higher subadditivity effects than less similar items, it currently does not explain how
subadditivity arises to start with.

In our model, the inputs are already boiled down to only the relevant variables and therefore very low-
dimensional, and the cost function only evaluates how well the network predicts posterior probabilities
from these inputs. Inputs in the real world, however, are likely more noisy and high dimensional. Several
related but different tasks are often multiplexed into the same network representations in the brain®™.
Extending our theory to more noisy and uncertain real-world learning is an important and interesting
challenge.

We have assumed that the computational bottleneck is fixed, defining a limited representational capac-
ity for the function approximator that must be shared (possibly unequally) across queries. However, in
particular when considering computational capacity as a cost, another possibility is that the bottleneck is
flexible: representational capacity might increase (e.g., through the allocation of additional units) when
greater accuracy becomes worth the cost of this greater investment, possibly by commandeering resources
from other cognitive systems. This predicts that more accurate probabilistic judgment should be associ-
ated with poorer performance on other concurrent tasks that share cognitive resources, and that properly

incentivizing people should improve their performance. Contrary to this, evidence suggests thatincentives
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have little effect on some inferential errors, such as base rate neglectl75’u7’358, and this point is corroborated

by evidence that inferential errors also appear in real markets with highly incentivized traders™*.

7.7.5 CONCLUSION

In his paper criticizing past research on base rate neglect, Gigerenzer*® argued that “adding up studies
in which base rate neglect appears or disappears will lead us nowhere. Progress can be made only when
we can design precise models that predict when base rates are used, when not, and why.” Here, we have
offered such a model. Concretely, our proposal is that people learn to infer a posterior from observed
information such as the priors, likelihoods and data. Our Learned Inference Model explains a host of
effects on belief updating such as under-reaction, belief bias, and memory-dependent subadditivity. It
also renders inference approximate and computationally tractable, making it a plausible process model of

human probabilistic inference.
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Ecological rationality in artificial intelligence

As modern deep networks become more complex, and get closer to human-like capabilities in certain do-
mains, the question arises of how the representations and decision rules they learn compare to the ones
in humans. In the previous chapters, we have studied how human representations adapt to their envi-
ronments, and make ecologically rational approximations to otherwise intractable inference problems. In
this chapter, I study analogous representations in one such machine-learned artificial system for natural
language processing.”*

Similar to the cognitive science experiments that discovered biases and errors in human probabilistic
judgment on designed test cases *7**»'7, we build a diagnostic test data set that examines these machine-
learned representations under controlled settings. Performance on this new diagnostic data set indeed
reveals a set of ‘cognitive biases’ that indicate heuristic strategies. By analyzing the training data set on
which this model was trained, we find that the heuristic strategies learned exploit underlying structure in its

learning environment, i.e. that the heuristics are ecologically rational. The mechanism for acquiring these
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heuristic strategies has similarities to the way I previously modeled context-dependent heuristic strategies
in humans (Chapter 7).

This demonstration, that ecologically rational heuristics might underlie the performance of deep-learning
systems, highlights a systemic problem with how machine-learned representations are evaluated. The stan-
dard measure of progress on a task in machine learning is to report improved performance on standardized
data sets, like the training data set in this paper. My results however, show that good performance on stan-
dard datasets can arise from incidental heuristics that do not generalize well. An intuitive example is a
system learning to recognize wolves in images by the snow in the background. While this heuristic works
most of the time, it does not really encode what a wolf is and would not generalize to recognizing wolves
in other environments. By leveraging methods from cognitive science like testing on diagnostic data sets,
which engendered the thriving literature on heuristic inference in human cognition, I develop better ways
to understand and assess these representations.

I further investigate the effect of the training distribution on learning these heuristic strategies, by study-
ing changes in the learned representations with various augmentations to the training set. These augmen-
tations alter the ecological validity of the learned heuristics, and is analogous to the machine-learning con-
cept of generating adversarial examples.”” Our results reveal parallels to the analogous representations in
people. We find that these systems can learn abstract rules and generalize them to new contexts under cer-
tain circumstances — similar to human zero-shot reasoning. However, we also note some shortcomings
in this generalization behavior. The modes of failure in this generalization is similar to the ecologically
rational heuristic behavior in humans studied in Chapter 7, such as belief bias. These analyses allow us to
formulate a new metric of ‘context-tying’ to test the generalization capacities of artificial representations,
and whether or not they generalize the way humans can. Metrics like these also lead to a clearer and more
concrete picture of what we mean by ‘human-like’ language understanding.

Studying these parallels suggests new ways to understand psychological phenomena in humans as well as

informs best strategies for building artificial intelligence with human-like language understanding. It also

A key distinction is that the machine learning methods described here is discriminative. It does not explicitly
learn the model followed by learning to perform inference in it, but rather learns these end to end. See Chapter 4 for
a more detailed discussion of this distinction.
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further highlights the importance of considering the environment (the training data) in understanding -

and, in the case of artificial systems, also manipulating — the representations that intelligent systems learn.

8.1 ANALYZING MACHINE-LEARNED REPRESENTATIONS

Recent years have seen a vast improvement in the capabilities of artificial intelligence systems, driven pri-
marily by developments in deep neural networks (see LeCun et al. **® for a review). These have allowed
artificial system to reach human-level performance at video games?®?, object recognition385, and voice gen-
eration ™, as well as produced impressive performance in several other domains. However, some serious
concerns haunt deep learning approaches and their promise as a general solution to artificial intelligence.
Many of these concerns surround the lack of structure in the representations and decision criteria these
systems learn****". This problem has been implicated in deep learning’s data inefficiency and inability to
learn abstract structure from few examples, its difficulty in utilizing hierarchical structure and fostering
transfer between tasks and domains, as well as the challenge of integrating established prior information
into deep learning systems. It also presents serious concerns about the interpretability of its representa-
tions and decision criteria, making them less dependable and risky for deployment in sensitive or highly
variable domains.

All of this points to a crucial problem: how can we better understand the representations learned by

236,268,487:488 primarily use approaches inspired by neuroscience meth-

these systems? Existing studies e.g.,
ods developed to understand the brain, for example the statistical analysis of unit activations, and ablation
studies where specific units are disconnected or deactivated. These methods promise interesting bottom-
up insights into the inner workings of these systems. Cognitive science provides another set of tools to

#363°° by decomposing cognitive processes into their com-

approach this problem from the top down**
putational components, building models that incorporate these components, and testing these by making
predictions about behavior on carefully selected test problems that distinguish different hypotheses.

The cognitive science approach has yielded huge benefits in understanding higher-level cognition in
62,279

humans, a prime example of which is the human ability to learn, understand, and produce language

This domain exemplifies a hallmark of human intelligence: the ability, in the words of von Humboldt,

187



to “make infinite use of finite means.” Specifically, human cognitive abilities have been characterized as

121258 _ this indicates an algebraic capacity to produce new combinations from known compo-

systematic
nents. For example, when a person learns a word in a specific context as part of a particular sentence,
they can immediately use this new word in an infinity of other sentences in which this word has never
previously been encountered. Systematicity therefore allows humans an impressive capacity to generalize,
transferring knowledge from one context to others. This ability requires the representations underlying
this newly learned word for example, to be abstract (not tied to specific contexts) and compositional (pos-
sible to combine with other words and sentences). The failure of neural network models to achieve such

21,261 T'his concern has

systematicity has been a recurring (and controversial) theme in cognitive science
previously been studied specifically in the domain of natural language*7%"**, demonstrating the lack of
abstract compositional reasoning in certain networks. These analyses are often carried out on toy systems,
and while they demonstrate conclusively the lack of systematicity, they largely neglect a deeper analysis of
what the systems do learn.

In this paper, we carry out an analysis of the representations learned by a state-of-the-art model for a
difficult natural language processing task. We discover that its representations are not systematic; instead,
the model uses various heuristic strategies. We then investigate how these heuristics might arise. Analyses
of the training distribution reveal that it is very biased, containing many unintended structural regularities
that can be exploited by these much simpler heuristics. These simple rules are therefore easily acquired
by the neural network, since they explain a substantial amount of variance without having to invoke a
more complex systematic representations. We then carry out various augmentations to the training set
to better understand if the system can learn abstract composable representations, given the right training
distribution. We find parallels between our findings and studies of human representations in terms of how

systematic they are under certain circumstances, as well as in terms of when and where this systematicity

breaks down. We discuss how such analyses can be fruitful to both cognitive science and machine learning.
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8.2 BACKGROUND

In this section we review some background on the kinds of representations we will be studying (vector
space embeddings of sentences). We also review the three key factors in how such embeddings are gener-
ated: the task that they are optimized for, the architecture of the model used to perform that task, and the

training distribution on which performance is optimized.”

8.2.1 VECTOR SPACE EMBEDDINGS

Vector space models represent items as vectors in some metric space. These have a long history in cogni-
tive science as models of semantic representations **>*%°. In particular, in the domain of language, vector
space models of words (also known as word embeddings) that are learned using distributional information
(statistics of text corpora) have been shown to encode syntactic as well as semantic structure, and have been

used in psychological models for syntactic category acquisition**#, inductive vocabulary learning**

, ana-
logical reasoning384, categorization *”7, and high-level associative judgments®?. Modern machine learning
has allowed the mining of very large datasets to produce vector space embeddings that are now commonly
used as the word representations in artificial intelligence systems for natural language processing *%°°.
Understanding language requires understanding not only words, but also their relations within a sen-
tence. These relations are abstract and composable, allowing language to be combinatorially productive
— with a finite set of words, one can systematically produce an infinite set of sentences simply by creating
new and longer combinations of these known words. The number of sentences in a language therefore
far exceed the number of words. For this reason, generating similar vector embeddings for sentences has
proven challenging. Recent papers have developed several supervised as well as unsupervised approaches to
learning vector space representations of sentences using recurrent neural networks (RNNs) that are able to

represent the order of words in a sentence*#+?'*%. These are intended to capture sentence-level semantic

content, and have been shown to perform reasonably well on transfer tasks (sentence-level semantic tasks

“The details and implementation of the optimization algorithm also contribute see*° for an overview, but as
long as the optimization reaches convergence this has relatively little effect, and we leave this out of our current
discussion.



on which the embeddings were not specifically trained). In particular, the performance of these sentence
models exceeds the performance of representations that treat sentences as bags of words (BOW models)
— these patently lack any order information about the words, therefore ignoring the abstract and compos-
able relational structure at the sentence level. However, it is unclear exactly what relational information
between words is actually represented in such RNN sentence models. In this work, we start to shed light

on this question.

8.2.2 NATURAL LANGUAGE INFERENCE

The sentence embeddings we analyze are trained on the natural language inference (NLI) task. The goal
is to classify pairs of sentences (a premise and a hypothesis) into ‘entailment’, ‘contradiction’, or ‘neutral’,
depending on the semantic relation between the two sentences. This is a popular domain for studying

164,300,326 ' Eor ex-

artificial representations since it has a lot of relatively interpretable underlying structure
ample, it is a simple domain in which abstract and composable relational structure is required — word-level
information is not generally sufficient to perform well on this task. The premise sentence “Anne is more
cheerful than Bob” contradicts the hypothesis sentence “Anne is less cheerful than Bob”, but entails the
hypothesis sentence “Bob is less cheerful than Anne”. Here, both the hypothesis sentences have the exact
same words, and would be indistinguishable if we were just comparing the words in them. More generally,
X is more Y than Z entails that Z is less Y than X, for any X, Y and Z. In this case, the specific words used
almost don’t even matter, and the bulk of the information is in the relations between the words in the
sentence. Encoding abstract rules like this allows us to systematically carry out natural language inference
on combinatorially many different sentences, with different Xs, Ys, and Zs.

The human ability to carry out abstract reasoning of this sort is a richly studied topic. Some of these
abilities however are so obvious, that they are often simply taken for granted without formal study. For
example, it is reasonable to assume that any adult human (in the absence of time pressure or cognitive
load) can fairly easily process that if X is more Y than Z, then in general Z is less Y than X irrespective of

the specific meanings of X, Y and Z. In this paper, we investigate to what extent certain machine-learned

sentence embeddings can represent and use such abstract rules in natural language inference.

190



Despite the generally acknowledged power of human abstract reasoning, a number of studies indicate
that humans are not perfect: semantic content (for example the specific meanings of the X, Y and Zs above)
has been shown to interfere with systematic inferences in an effect often termed ‘belief bias’+***. This effect
is especially noticeable in children™®, as well as adults under time pressure or cognitive load"®. In the last
part of this paper, we discuss similarities between humans and machines in how they fail certain tests of

systematicity.

8.2.3 MODELS FOR SENTENCE EMBEDDINGS

The sentence embeddings we study in this paper are from a highly successful NLI system, InferSent®.
Each premise and hypothesis sentence are input to a sentence encoder as a sequence of pre-trained 300-
dimensional GloVe word embeddings**?. These word embeddings already contain a lot of information
about the semantic and syntactic roles of the words (see section on Vector space embeddings for details),
and therefore a large part of the lexical information is already represented. Therefore the bulk of the work
InferSent has to do is to learn and represent how these words relate to one another in a sentence to provide
meanings. The sentence encoder takes in this variable length input and, after passing it through various
recurrent and convolutional layers see for details, provides a 4096-dimensional vector as output. This
output vector serves as a sentence embedding. To make the final inference, these sentence embeddings for
the premise and hypothesis are fed to a simple classifier described in Figure 8.1 that labels each pair as entail-
ment, neutral or contradiction. The network is trained end-to-end with supervised learning, using a large
labelled dataset for NLI (see next section for details on this dataset). The learned embeddings were shown
to perform well on other sentence-level tasks (such as sentiment analysis, semantic textual similarity and
other natural language inference datasets) by re-using the sentence encoder and training only the classifier
for the specific task at hand. This indicates that the sentence encoder does capture some semantic content
in the embeddings.

For our tasks, we replicate the procedure in Conneau et al. * to obtain sentence embeddings. These are
henceforth referred to as the InferSent sentence embeddings. Our trained InferSent model gives us 84.73%

accuracy on validation and 84.84% accuracy on the test dataset, which is comparable to the performance of
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Figure 8.1: InferSent architecture ®°.

the classifier reported in Conneau et al. . For comparison, we also train a bag-of-words (BOW) baseline
model that averages the pre-trained GloVe word embeddings for all the words in the sentence to form a
sentence embedding. These embeddings cannot represent abstract relational structure, since the architec-
ture of the model used to generate them (a simple average of the word embeddings) cannot express word
order. We then train a simply classifier on these embeddings to perform natural language inference. This
model achieves 53.99% accuracy on the SNLI test set comparable to the BOW performance reported in .

Neural networks can act as universal function approximators >, and given sufficient capacity, they
can represent any arbitrarily complex set of relations between the words in the sentence. The InferSent
model has a very large capacity due to a large number of layers and hidden units see®, so a lot of abstract
compositional structure is in theory within the representational capacity of these sentence embeddings. In

this paper, we analyze how much systematic structure is actually learned and utilized for the NLI task at

hand.

8.2.4 TRAINING DATASETS

To understand sentence embeddings like the ones learned by InferSent, it is imperative to not only consider

the model specifications for the system that produces them (in this case the specific end-to-end architecture
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of the network in InferSent), but also the learning signals it receives from the training set. For many deep
learning based methods, very little information about the structure of the task is baked into the architecture
of the models — the only structure about language that it is endowed with before training are the biases
that come with using a recurrent neural network as the architecture. This specifies that sentences have
variable-length, sequential structure. These embedding models are therefore fairly ‘tabula rasa’, and most
of what they represent about the structure of the task (in this case natural language inference) is learned
from training data. As elaborated in the previous section, some abstract compositional structure is within
the representational capacity of the InferSent sentence embeddings — but whether or not the right structure
isactually learned and represented depends largely on the training data. The significance of the training set
on the representations learned by flexible deep learning methods is often not adequately considered. One
contribution of this work is to highlight and analyze this issue.

InferSent was trained on the Stanford Natural Language Inference (SNLI) dataset*#, a popular labelled
dataset for natual language inference. SNLI consists of ssok premise-hypothesis sentence pairs, and is
balanced (consists of equal number of pairs with entailment, contradiction and neutral relationships). The
dataset was generated with a crowd-sourcing framework. Workers were presented with a scene description
from a corpus of image captions that act as the premise, and asked to supply hypothesis sentences that
have each of the three possible NLI relations (entailment, neutral, and contradiction) to the given premise.
The freedom to produce entirely novel hypotheses leads to a rich set of sentences; however, it also leads to
some artifacts that can strongly bias the representations learned by a ‘tabula rasa’ system. We discuss these

in later sections.

8.3 A TEST DATASET OF MINIMAL CASES: THE COMPARISONS DATASET

Our goal is to understand the representations and decision criteria learned by InferSent, in particular how
much systematic relational information they encode and utilize — do they represent abstract rules for the
ways words combine to give meaning to sentences? In the machine learning literature on natural language
processing, any performance above the bag-of-words (BOW) baseline (that only receives the words in the

sentence with no order information) is often seen as proof of the encoding and utilization of relational
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information. However, this is an unwarranted conclusion—the BOW baseline usually receives only aver-
aged word vectors for the sentence, and therefore also loses some of the lexical information. It often does
not actually reach the best possible performance with only the words. Performance above this baseline
therefore does not license the conclusion that relational information is being encoded and used at all.

Here, we pursue an alternative approach, inspired by traditions in cognitive psychology and psycholin-
guistics of building diagnotic test sets to investigate the underlying representations and decision rules. The
goal is to generate a set of sentence pairs such that encoding the relations between words (in addition to the
words themselves) is reguired to correctly classify them into the three NLI classes. Diagnostic test datasets
such as these, that posit a hard baseline for performance without relational information, provide a more
foolproof way to test whether such information is being used.

We considered pairs of sentences such that the NLI relation between the sentences can be changed with-
out changing any of the words in the sentence, only their order. We generated our test dataset using com-
parisons as these are easy to fit into the NLI framework, and yield many simple examples of sentence pairs
that require more than word-level data to understand. For example, the premise sentence “the woman is
more cheerful than the man” contradicts one hypothesis sentence, “the woman is less cheerful than the
man”, but entails another hypothesis sentence, “the man is less cheerful than the woman”. Since both hy-
pothesis sentences have the exact same words, they would be indistinguishable if we were just comparing
their bag-of-words representations. Therefore, a model based only on the words, and not considering the
relations between them, would at most get one of the two classifications right. This caps the bag-of-words
performance at 50%), and some relational rules must be learned to perform above this baseline.

Generation of several such sentence pairs can be easily automated. We considered three sub-types, de-

scribed below and summarized in Tables 8.1 and 8.2.

8.3.1 SAME TYPE

Premise-Hypothesis pairs differ only in the order of the words.
Premise: The woman 1is more cheerful than the man

Hypothesis: The man is more cheerful than the woman
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CONTRADICTION
Premise: The woman is more cheerful than the man
Hypothesis: The woman is more cheerful than the man

ENTAILMENT

8.3.2 MORE-LESS TYPE

Premise-Hypothesis pairs differ by whether they contain the words ‘more’ or ‘less’.
Premise: The woman is more cheerful than the man

Hypothesis: The woman is less cheerful than the man
CONTRADICTION

Premise: The woman is more cheerful than the man

Hypothesis: The man is less cheerful than the woman

ENTAILMENT

8.3.3 NOT TYPE

Premise-Hypothesis pairs differ by whether they contain the word ‘not’.
Premise: The woman is more cheerful than the man
Hypothesis: The woman is not more cheerful than the man
CONTRADICTION

Premise: The woman is more cheerful than the man

Hypothesis: The man is not more cheerful than the woman

ENTAILMENT
Type Entailment hypothesis Contradiction hypothesis
Same Xismore Y than Z Z is more Y than X
More-Less Zisless Y than X Xisless Y than Z
Not Z is not more Y than X X isnot more Y than Z

Table 8.1: Rules in Comparisons dataset for Premise: X is more Y than Z
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Type Number of sentence pairs

Comparisons (same) 14670
Comparisons (more-less) 14670
Comparisons (not) 14670

Table 8.2: Comparisons dataset summary.

To facilitate comparison with the SNLI dataset, we ensured that the vocabulary distribution of our
Comparisons dataset is similar to the original SNLI training dataset.” This ensured that we are only ma-
nipulating the relational structure of the test set, and poor performance cannot be attributed to not having

experienced the specific words before.

8.4 TESTING THE SENTENCE EMBEDDINGS

We tested the two classifiers based on two different sentence embeddings (the InferSent sentence embed-
dings, and the BOW sentence embeddings) on the constructed test set (the Comparisons dataset, Table
8.2). Both of these classifiers were trained for the same task (Natural Language Inference), on the same
training dataset (SNLI), and differed only in the model used to generate them. The InferSent embeddings
had access to word order, while the BOW embeddings did not (see Section ‘Models for sentence embed-
dings’ for details). The overall performance of each of the two classifiers on the Comparisons dataset are

given in Table 8.3, and analyzed in greater detail in the following sections.

Type BOW InferSent
same 50.0 50.37
more/less 30.24 50.35
not 48.98 45.24

Table 8.3: Performance on the Comparisons dataset.

*Only a few words differed by more than 1% from their occurrence rate in SNLI, such as not, 4, than, the, is,
less, more. This was inevitable given the general structure of the comparison sentence pairs we use. All of these words
however did still occur in the SNLI training corpus, and were not new to the model at test time.
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8.41 PERFORMANCE OF BAG oF WoORDS

We found that the BOW embeddings make classifications that are exactly symmetric across the two true
labels (entailment and contradiction) in each task (rows in Figure 8.2). This is expected since the sentence
pairs with one label are just permuted versions of the sentence pairs with the other label. Therefore BOW
cannot distinguish them, and necessarily classifies both of them the same way. This also ensures that the
performance is capped at 50%. Asymmetry between the classifications of the two categories can occur only
when relational information is encoded in the sentence embedding.

Considering the aggregate performance of BOW in Table 8.3, we found that performance, particularly
on the ‘more/less’ type subset of the test dataset (30.24%), was significantly below 50%. This highlights
the trouble with using BOW embeddings as a baseline for the encoding and use of relational information.
Up to 50% performance is achievable on this dataset without using any relational information; therefore

performance above the BOW baseline of 30.24% does not necessarily imply the use of relational informa-

tion.
BOW: same type 10 BOW: more/less type o BOW: not type 10
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Figure 8.2: BOW embedding confusion matrices, with normalized rows.
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Figure 8.3: InferSent embedding confusion matrices, with normalized rows.

197



8.4.2 DPERFORMANCE OF INFERSENT

The performance of the InferSent embeddings was slightly asymmetric (Figure 8.3), indicating that it was
able to distinguish sentences slightly, based on relational information. Yet overall the InferSent embed-
dings were extremely poor at this task (Table 8.3), achieving performances slightly above 50% for two of
the three sub-types of sentence pairs in the Comparisons dataset, and even less than 50% in a third sub-
type. This indicates that InferSent embeddings do not correctly encode and utilize the kinds of abstract
relational rules we tested with the Comparisons dataset.

However, InferSent’s performance on another test dataset (the SNLI test dataset) is as high as 84%
— so it is clearly encoding some relevant information about natural language inference. Further, a quick
glance at Figure 8.3 indicates that InferSent does not respond randomly to the queries in our Compar-
isons dataset, but rather in some structured (though incorrect) way. Rather than simply conclude that
InferSent embeddings are not systematic and leaving things at that, we can study patterns in the incorrect
classifications made to better understand the underlying representations and decisions rules. Since our test
dataset is highly structured, it allows a controlled way to generate and test hypotheses about the heuristic
representations and decision rules InferSent implements.

Apart from isolating and characterizing these heuristics, it is also instructive to consider how InferSent
might come to encode them in the first place. To answer this, we look to the study of heuristic strategies
in humans. The theory of ecological rationality #># posits that a system can exploit structural regulari-
ties in its learning environment using heuristics that achieve close to optimal performance in that specific
environment. These might be much simpler than the most general strategy that performs well in all en-
vironments. Heuristics that leverage these structural regularities are therefore termed ‘ecologically valid’
in that environment. This suggests that we can better understand how heuristic strategies might arise in
InferSent by examining if they are ecologically valid in its ‘learning environment’ (i.., the training set). In
the following sections, we delve into the heuristic strategies that explain performance on our Comparisons
datset, as well as how InferSent might have come to encode them by testing their ecological validity in the

SNLI training dataset.



OVERLAP HEURISTIC

We note in Figure 8.3 that almost all the sentence pairs in the same-type comparisons were classified as
entailments, despite half of them being true contradictions. A distinguishing feature of the same-type
comparisons is that the premise and hypothesis sentences have full word overlap (they both contain exactly
the same words). This observation allows us to hypothesize an overlap heuristic: high overlap in words
between premise and hypothesis biases InferSent against classifying the pair as a contradiction.

While we have seen some evidence that this heuristic is indeed at play (based on the performance on
the same-type comparisons), the question remains as to why it encodes this rule. With our knowledge
of language, we know this simple rule to reflect on incorrect understanding of natural language inference.
However, all the knowledge about the NLI task that InferSent encodes is from its training dataset. If the
dataset has underlying structural regularities that can be exploited by simple heuristic strategies, then a
tabula rasa model for NLI such as InferSent that is trained on this dataset will learn to encode it.

We carried out an analysis of the SNLI dataset to determine if the overlap heuristic is ecologically valid
in it. First, we observed anecdotally that indeed several contradictory sentence pairs have no overlap in
words. For example, a contradictory sentence pair in SNLI is:

Premise: Several people are trying to climb a ladder in a tree.
Hypothesis: People are watching a ball game.

CONTRADICTION

# of overlap words (

To quantitatively verify this observation, we ranked all the sentence pairs in SNLI by overlap rate: = = -——-=

non-increasing order). We then considered the top X sentences with highest overlap for different Xs. As
shown in Table 8.4, when considering the full dataset, the distribution is balanced (the percentage of en-
tailments, contradictions and neutral sentences are equal). However, we found that as the word overlap
in the sentences increases, the percentage of contradictions drops. When considering only the top 1000
sentence pairs for overlap, we found that 91.5% of them have entailment or neutral labels, with only the
remaining 8.5% having a contradiction label.

Itis therefore natural that InferSent encodes the simple overlap heuristic as a predictor of contradiction.

This explains not only the failure of InferSent to generalize its good performance on SNLI to the same-type
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Top Entailment Neutral Contradiction

All 33.4% 33.3%  33.3%
10000  39.5% 35.7% 24.8%
1000 50.8% 40.7% 8.5%

Table 8.4: Percentage of entailments split by overlap rate of words in SNLI.

comparisons in our test dataset, but also matches the specific failure mode we observe in its responses.

ANTONYMS HEURISTIC

We note in Figure 8.3 the opposite trend for the more/less-type comparisons, where almost all the sentence
pairs were classified as contradictions, despite half of them being true entailments. A distinguishing feature
of the more/less-type comparisons is that the the premise and hypothesis always differ by one word - if the
premise contains the word ‘more’ (‘less’) then the hypothesis always contain the word ‘less’ (‘more’). This
observation allows us to hypothesize an antonyms heuristic: sentences differing in the presence of words
that have opposing meanings (antonyms) tend to be classified by InferSent as contradictions, irrespective
of the other words or their order in the sentence.

Similarly to the previous section, we investigated the training dataset to elucidate if this heuristic is eco-
logically valid in InferSent’s training set. Anecdotally, we saw that the contradicting hypotheses provided
by crowd workers to generate SNLI do follow this pattern. For example, a contradictory sentence pair in
SNLI is:

Premise: A man in a white t-shirt takes a picture in the middle of the street with
two public buses in the background.
Hypothesis: A man is wearing a black t-shirt.

CONTRADICTION

To verify this observation quantitatively, we analyzed the statistics of antonym usage in SNLI. To test
whether a sentence pair (A,B) contains antonyms, we went through each word in sentence A, and consid-

ered all synonyms of that word, and considered all antonyms of those synonyms. Finally, we checked if
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sentence B contained any of those antonyms. These synonyms and antonyms were found using the NLTK
WordNet software**. We then considered two different statistics. First, we calculated P(Contradiction |
Antonym), which is the probability that a sentence pair is a contradiction given that its premise and hypoth-
esis contain an antonym pair. This measures how well the presence of antonyms predicts a contradiction
label in the training set. Second, we calculated P(Antonym | Contradiction), which is the probability that
a contradictory sentence pair contains antonyms. This measures how well a contradiction label predicts
antonyms. Both statistics were compared with the equivalent statistic for entailment, to provide a baseline
for comparison. Table 8.5 shows that the presence of antonyms strongly predicts a contradiction label in
the SNLI dataset (61.2% compared to chance at 33.3%). We also found that a contradiction label predicts
the presence of an antonym pair (12.2%) more strongly than entailment did (3.5%). This indicates that the

antonyms heuristic can explain significant variance for the contradiction label in the training set.

P(Antonym | X) P(X | Antonym)

X = Contradiction 12.2% 61.2%
X = Entailment 3.5% 18.0%

Table 8.5: Percentage of entailments split by antonym word pair in the SNLI dataset.

Since most of our Comparisons dataset contained a large amount of overlap between premise and hy-
pothesis, the rules InferSent applies when responding to these test questions might be biased towards those
learned in similar high-overlap settings during training. We checked the statistics of antonymy in the the
high overlap subset of SNLI (top 10,000 highest overlap) to provide a closer comparison (Table 8.6). Here,
contradiction predicts the presence of an antonym pair (43.7%) more strongly than in the whole dataset
(12.2%). The difference between P(Antonym | Contradiction) and P(Antonym | Entailment) is also more
pronounced in this high overlap subset. The presence of an antonym pair no longer predicts contradic-
tions at a high rate (28.9 %), but this is possibly due to the very low base rate of contradictions in the high
overlap subset of SNLI, as compared to entailments.

These results suggest again, that the underlying statistics of the SNLI dataset allow models, including

InferSent, to perform well with simple lexical heuristics that ignore the order of words and their relations.
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P(Antonym | X) P(X | Antonym)

X = Contradiction 43.5% 28.9%
X = Entailment 8.7% 34.3%

Table 8.6: Percentage of entailments split by antonyms in high overlap SNLI subset.

NEeGATION HEURISTIC

We see in Figure 8.3 that the not-type comparisons are preferentially classified as contradictions. A distin-
guishing feature of the not-type comparisons is that the premise and the hypothesis differ by the presence
of the negation ‘not’. This observation allows us to hypothesize a negation heuristic where sentence pairs
that differ in the presence of negations are preferentially classified as contradictions.

Following procedures analogous to previous sections, we first noted anecdotally, that this heuristic
seems to have validity in the contradicting hypotheses in SNLI. For example, a contradictory sentence
pair in SNLI is:

Premise: Men turn to the camera to smile on the middle of three long tables 1in
a refectory.
Hypothesis: The man is not smiling.

CONTRADICTION

We verified this observation quantitatively by looking at the statistics for negation in SNLI. We col-
lected all sentence pairs that contain “negating N-grams”: no, not, n’t (by considering “n’t”, we included
words such as “don’t” or “doesn’t”). We then carried out analyses similar to the previous section, where
we checked (1) the predictive power of negations on contradictions (P(Contradiction | Negation)), and
(2) the predictive power of contradiction on negations, P(Negation | Contradiction), and compare both
of these to statistics for entailment as a baseline. We found (Table 8.7) that the presence of a negation
strongly predicts contradiction in the SNLI dataset (58.4% compared to chance at 33.3%). We also found

that while both numbers are very low, a contradiction predicts the presence of a negation (3.3%) slightly

more strongly than entailment does (1.1%). We also carried out the same analysis for a high-overlap subset
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(top 10,000 highest overlap) of SNLI to maximize similarity with our comparisons dataset and saw similar
results (Table 8.8). In fact, the presence of negation predicts a contradiction, P(Negation | Contradiction)
=60.0%, at rates comparable to that in the full dataset, P(Negation | Contradiction) = 58.4%, despite the
much lower base rates of contradiction in this subset of the data. This indicates strong ecological validity

for this heuristic in the high overlap subset of the SNLI dataset.

P(Negation | X) P(X | Negation)

X = Contradiction 3.3% 58.4%
X = Entailment 1.1% 20.0%

Table 8.7: Percentage of entailments split by negation in SNLI dataset.

P(Negation | X) P(X | Negation)

X = Contradiction 1.3% 60.0%
X = Entailment 0.1% 7.5%

Table 8.8: Percentage of entailments split by negation in high overlap SNLI subset.

SUMMARY OF HEURISTICS

We found evidence for three heuristics that explain the bulk of the patterns seen in the performance of
InferSent on our Comparisons dataset, all of which are ecologically valid in the SNLI dataset. First, we
identified the overlap heuristic where a large overlap in words between two sentences leads InferSent to
not classify them as contradictions. Second, we identified the antonyms heuristic and the negation heuristic,
where the premise and hypothesis differ in the presence of an antonym or a negation, which leads InferSent
to classify them as contradictions.

These illustrate a disproportionate dependence on lexical (rather than relational) meaning in the repre-
sentations and decision rules used by InferSent. While these heuristics serve well in certain domains, for
example in SNLI, they don’tamount to a more general encoding of entailment and contradiction between

sentence pairs, as evidenced by InferSent’s poor performance on our Comparisons dataset.
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The analysis so far has highlighted word-level heuristics that InferSent might be using. Yet the confu-
sion matrix results (Figure 8.3) show a slight asymmetry, indicating at least minor multi-word effects. This
suggests that InferSent might be using some (potentially also heuristic) encodings for word order. How-
ever, a systematic analysis of the effect of word order, and how much variance such heuristics might explain,
is challenging due to the combinatorial explosion in the number of possibilities. We leave a thorough in-

vestigation of this to future work.

8.5 AUGMENTING THE LEARNING ENVIRONMENT

The foregoing results suggest that such ecological validity of simple heuristics in the SNLI training data
(InferSent’s learning environment) could explain why InferSent acquires them over a more abstract, system-
atic representation of the relations between words in a sentence. This leaves open the question of whether
architectures such as InferSent are capable of learning the abstract relational rules needed to succeed at our
task given a different training set where simple heuristics no longer explain so much of the variance. RNN
architectures like the one in InferSent can in theory represent the relational structure required to encode
the abstract rules of the sort in Table 8.1 (see Section ‘Models for sentence embeddings’ for details). But
how might we get them to learn and use them? In this section, we explore this question by training the
InferSent model on part of the Comparisons dataset, and testing on a held-out subset of it. This serves
to test whether simple training on examples of the rules in Table 8.1, will enable InferSent to encode some
abstract relational rules.

The total training subset of our Comparisons dataset consists of 40k sentence pairs (7% the size of the
ssok pair SNLI training set). Validation and test sets consist of 2000 sentence pairs each. There are no
overlapping sentence pairs between any of these sets, therefore simply memorizing the training set will not
allow good test performance. Good test performance requires the encoding and utilization of an abstract
relational rule.

We started with the original InferSent embeddings already trained on the SNLI dataset, and then fine-
tuned it on our new Comparisons dataset using the same protocols used in * to train InferSent. Results are

shown in Table 8.9. We found that using this method, performance on the SNLI data task degrades over
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Performance (%)

Epoch Train(Comp) Test(Comp) Test(SNLI)
o) 47.81 45.36 84.84
13 99.91 99.8 56.37

Table 8.9: Results of fine-tuning InferSent on the Comparisons dataset.

the course of fine-tuning on the new Comparisons dataset from 84.84% to 56.37%. This points to over-
fitting to the Comparisons data, at the cost of representing information necessary for SNLI. We found
however, that performance on the Comparisons test set is much higher (99.8 %) than when trained only
on SNLI (47.81%). Note that this test set consists of sentence pairs InferSent has never seen before. We
thus find that the model architecture for InferSent, given the right training data, can encode some form
of abstract relational structure that allows it to learn rules of the form in Table 8.1 and apply them to new

sentence pairs — in particular sentence pairs with Xs, Ys and Zs that it has never seen in that combination

before.
Performance (%)
Epoch . .
Train(Combined) Test(Comp) Test(SNLI)
o 33.33 33.33 33.33
12 90.99 100.00 84.96

Table 8.10: Results of retraining Infersent on both SNLI and the Comparisons dataset.

We then checked whether InferSent can represent this relational structure without losing the informa-
tion necessary for SNLI. We started with an untrained network, and then trained on an augmented version
of the original training data. Here, examples from the SNLI training set were randomly interleaved with
examples from our Comparisons training dataset, otherwise using the same training protocols reported
in%. The test results are reported in Table 8.10. We found that the accuracy obtained this way on the
SNLI test set (84.96 %) is comparable to the model trained only on SNLI (84.84 %). Moreover, test accu-
racy on the Comparisons dataset is close to perfect (99.55 %) and is much higher than the model trained
only on SNLI (47.81 %). This establishes that in this case the model has enough capacity to achieve high

performance on specially designed edge-cases like the Comparisons dataset, without loss of performance
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on the more general SNLI dataset.

This result also verifies that the heuristics we find in the original InferSent are an ecologically rational re-
sponse to a training environment that licenses these ‘shortcut’ strategies, and not because of shortcomings
in representational or learning abilities of the model itself. This points to the benefits of understanding the
learning environment in greater detail, and potentially including specially designed data to guard against
incorrect heuristics that don’t generalize. Research on the generation of adversarial examples targets this
intuition. The idea is to have a separate ‘adversarial’ model that generates edge-case training examples
optimized to try and fool the main model into giving the wrong answer'®”#%". It does so by generating
examples that violate the heuristics the main model has learned from training thus far. Subsequently, the
training environment for the model is augmented to include these edge cases making the current heuris-
tics no longer ecologically valid. The main model therefore updates its representations and decision rules
accordingly and the process is continued. Our work provides some insight into how we can leverage a
top-down understanding of the structure of language and systematic stimulus design, to generate such
edge-case training data and potentially improve the representations learned by machine learning systems.

A key hurdle for the scalability for such augmentation as a solution to improving artificial representa-
tions of language however is that there are an infinite number of possible stimuli, with brand new combi-
nations of words that may never have been encountered before. No finite amount of augmentation will
allow a system to represent and process this infinite space of natural language sentences unless it can also
generalize its knowledge gained from the examples observed thus far to new examples. In this section we
saw that InferSent can generalize rules like those in Table 8.1 to never previously observed combinations of
X, Y and Z to perform well on the test set of the Comparisons dataset. In the following sections we further
discuss the generalization capacities of the representations learned by InferSent, and focus in particular on

their differences and similarities to human generalization.

8.6 GENERALIZATION

An important and well-studied aspect of human-like representations is that rules learned with one set of

121,258

tokens can be systematically generalized to other tokens™*°. In the section on ‘zero-shot reasoning’ we
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study if our machine-learned representations can perform such generalization to tokens that have never
previously been observed. More often however, the tokens to which we want to generalize learned rules
have previously been observed, but simply in a different context. The historical contexts of tokens can
determine some of their properties — like syntactic category, and semantic content — which in turn inform
how humans generalize rules to them, sometimes deviating from entirely systematic generalization. In our
section on ‘context-tying’, we examine how the historical context of tokens influences systematic general-
ization in our machine-learned representations, and how these effects compare to those in humans.
Throughout this section, we will only consider sentence pairs that are similar in structure to ones in our
Comparisons dataset, and will no longer consider performance on SNLI. We will predominantly be study-
ing the model that has been trained jointly with our Comparisons dataset in addition to SNLI (referred

henceforth to as the augmented-InferSent model).

8.6.1 ZERO-SHOT REASONING

Zero-shot reasoning is the ability to solve tasks involving a term that has never been seen before. This (often

also called zero-shot learning) has commonly been used as a test for systematicity **'

—a human can carry
out inferences like “Anne is more bofty than Bob” entails that “Bob is less boffy than Anne” without ever
having encountered the word “bofty” before.

But this ability requires the representation learned to be abstract, and not be tied to the Xs, Ys, and
Z’s seen in training. Instead it has to encode encode an abstract relational rule where “X is more Y than
Z” entails “Z is more Y than X” for all possible X, Y and Z, irrespective of their specific values. If the
representation are tied to the observed values of Xs, Ys and Zs and cannot generalize to new values for these,
each possible X, Y and Z has to have occurred in the training dataset. However, these can be arbitrarily
complex (e.g., “The old woman with a flower in her hair is more deliriously happy than the tall young
man wearing the blue bowler hat” implies that “The tall young man wearing the blue bowler hat is less
deliriously happy than the old woman with a flower in her hair”). Ensuring that every possible such X, Y

and Z have been seen in the training data is impossible, and this kind of generalization is key to human-like

language understanding.
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In this section we consider the performance of the augmented-InferSent model. We already know that
this model performs well on both SNLI, and generalizes to new combinations of X, Y, and Z in our Com-
parisons dataset (see Table 8.10), where each X, Y and Z have previously been seen. In this section, we
analyze its ability to generalize to 3 different kinds of Xs and Zs that have never been encountered during
training.

* Held out nouns: Nouns (from the GloVe dataset) that never occur in the training data (neither

SNLI nor our Comparisons dataset).

* Made up “words”: Directly using a 300 dimensional vector randomly sampled from an uncorre-

lated Gaussian distribution, as a stand-in for a real GloVe vector.

* Long noun phrases: The Xsand Zs used in training as part of the Comparisons dataset were of the
type “the man”. Here we generate longer noun phrases of the form “the grumpy man in front of

us” consisting of randomly sampled adjectives, nouns and prepositional phrases.

For each sub-type in the Comparisons dataset (same, more-less and not types), we generated a test set
of 1,000 sequences by substituting Xs and Zs of the above kinds. The Ys were sampled in the same way
as in the Comparison dataset (random adjectives that appear in SNLI). We then tested on these sentences,
and reported the average accuracy. Note that not only had these specific sentences (combinations of X, Y
and Z) never been seen during training, even the individual Xs and Zs had not been seen. We found that
InferSent generalizes to all three new kinds of Xs and Zs quite well (Table 8.11). The held-out nouns are
the most similar to the Xs and Zs seen during training since they are also exactly one word, and are nouns
sampled from GloVe. It is notable that generalization performance with these is comparable to that with
the very different kinds of Xs and Zs such as the made-up words, or longer noun phrases, indicating a fairly

abstract representation of relational rules that are not tied to the specific value of X and Z.

Test set InferSent (%) augmented-InferSent (%)
Held-out nouns 47.9 82.0
Made up words 48.0 83.2
Long noun phrases  49.1 84.9

Table 8.11: Zero-shot reasoning: Performance on previously unobserved Xs and Zs.
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This indicates that the representation learned by augmented-InferSent is partially abstract and compos-
able, allowing some systematic generalization to a variety of Xs and Zs that have never been seen before. In
the next section we further probe contextuality of generalization and how that interacts with the training

set / learning environment, making comparisons to human generalization.

8.6.2 CoNTEXT TYING

We saw in the previous section that augmented-InferSent has some of the the central human-like capacity
of zero-shot reasoning. This indicates some systematicity in its representations. However, even humans
do not always succeed at fully systematic generalization. In this section we investigate these exceptions and
qualifications to the widest interpretation of systematic generalization, focusing on the role of context in

generalization. We do this in two ways: using type violations and biased exposure.

TYPE VIOLATIONS

One extreme of learning a purely abstract rule like in Table 8.1is to be completely insensitive to any prop-
erties of the Xs, Ys and Zs, and generalize this rule to all possible tokens. However, this very strong gener-
alization may not always match human intuitions. For example the sentence pair

Premise: The punctual is more cheerful than the man

Hypothesis: The punctual is not more cheerful than the man

does not seem to have a right answer. The rule applies easily only to Xs, Ys and Zs that are of the right type
— in this case the right syntactic category.

While syntactic structure is not directly provided to the embedding model, some notion of syntactic
category will be implicit. Information about the syntactic category of a word can be gleaned from its con-
texts, i.e. the other words around it®¥4+43° and in some cases can be decoded from word embeddings
directly+9.

We investigated generalization of rules in augmented-Infersent to test items which, unlike in the previ-
ous section, had been previously seen, but had only occurred in a different syntactic role (i.e., a different

context). We generated a test set of ungrammatical sentences using Xs and Zs that are random non-nouns,
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in our case random adjectives from SNLI. Crucially, these words had been seen before, but never in the po-
sition/context that X and Z occupy in the Comparisons dataset, since appearing in those positions violates
syntax. We then evaluated the performance of the augmented-InferSent model in the same way as in the
previous section on zero-shot generalization. We found that accuracy on such sentence pairs is low, giving
poor performance (Table 8.12). This indicates that the rules learned, though at least partially abstract as
indicated by generalization to held-out nouns, come with restrictions on the type of (known) items they
will apply to. This follows closely how humans generalize — that learned rules don’t generalize indiscrim-
inately to all tokens, but rather only within some fixed categories. These categories in turn, like syntactic
categories, can be gleaned from the contexts in which these tokens usually appear. In the next section, we

examine the role of semantic content in the context of tokens, and how that influences generalization.

Test set InferSent (%) augmented-InferSent (%)
Held-out nouns  47.9 82.0
Non-noun words  47.9 49.3

Table 8.12: Type violations: Performance with tokens from the wrong syntactic category, versus with held-out tokens from the
right syntactic category

BIASED EXPOSURE

In this section, we manipulate the context of various tokens, without violating the syntactic rules, to study
its effect on generalization. In all the augmentations we have used so far, some token X is equally likely to
occur in the context of a same-type sentence pair as it is in the context of a more/less—type sentence pair.
Similarly, X is as likely to occur in the context where it is ‘more cheerful than the man’ as it is to occur in
the context where it is ‘less cheerful than the man’. Therefore, apart from the restrictions of syntactically
correct placement, there is no additional structure around which contexts which tokens occur in — they are
all randomly distributed. However, in the real world, tokens are not uniformly sampled into contexts even
within constraints of syntax; a word is much more likely to be sampled repeatedly in certain contexts than
others. This is because the appearance of tokens in naturally occurring sentences is not determined solely

by their syntactic role, but also by their semantic role. For example, one is more much likely to encounter
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the sentence “broccoli is more nutritious than candy” than the sentence “candy is more nutritious than
broccoli”, since one is true of the real world, and the other is not. Nonetheless, the premise “candy is
more nutritious than broccoli” still logically entails the hypothesis “broccoli is less nutritious than candy”.
Statistics of how often certain implications and inferences are made in the learning environment (that will
be reflected in semantic beliefs about the real-world) can interfere with such logical inferences in humans
in both deductive'®” and probabilistic*®® reasoning. This is often termed ‘belief bias’.

In this section, we test if the representations we are studying exhibit belief bias. We manipulate the
uniformity in the co-occurrence of tokens with contexts (subject to syntactic constraints), and examine
if a newly augmented InferSent model can generalize a token it has seen in one context, to cases where it
appears in a different context. We compare this to a zero-shot control condition, where the test token has
never been seen before.

To this end, we first generated variants of our Comparisons dataset where tokens are no longer uni-
formly sampled into contexts. We considered only two sub-types of the comparison types summarized in
Table 8.1: the same-type (C2) and the more/less-type (C). These consist the two contexts Cj and C; in
which tokens can appear. Noun phrases were generated using the same procedure used for the long noun
phrases in the section on zero-shot reasoning—phrases (tokens) of the form “the grumpy man in front of
us”. These tokens were then randomly divided into 7° -type and T™*-type (460 each). Therefore there is no
structural difference between the the 7° and T* tokens, only the context in which they are seen will differ
across conditions.

We built four sets of sentence pairs that vary in their context-token combination: C,T° consisted of
combinations of 7° tokens in a C, context, so on and so forth for C,T*, C;T°, and C;T*. Each such
context-token combination set was independently divided into train and test sets (each of size s000). The
sentence pairs in each of the four test sets had never been seen before in any of the four training sets.

We augmented the original InferSent embeddings with different combinations of samples from the

four different train sets.” We then compared their performance on all four of the test sets to examine

“In this experiment we only make comparisons between the performances of differently augmented models,
rather than considering the overall performance like in previous experiments. The influence on performance from
the SNLI training data is irrelevant since it will affect all four augmented models equally. Therefore we can neglect
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how different context-token combinations seen during training influenced test generalization. The three
different embeddings that result are as follows:

+ Zero-shot control condition: Only the 7% tokens were seen in training; no 7* token were seen at
all. Therefore testing with tokens from T™* is analogous to zero-shot reasoning. The training set

consisted of the full training sets from C; 7° and G, 7°.

* Experimental conditions: Both 79 and T* tokens were seen in training, therefore testing with tokens
from T™ is not analogous to zero-shot reasoning. However, the contexts in which 79 and T* tokens

appear during training differed. There are two different embeddings we trained of this kind.

- Exposed—-CiT* : This embedding saw 79 tokens in both C; and C, contexts (as with the
control condition), and additionally also saw T* tokens — but only in the C; context. In
order to balance the number of training examples from each context between conditions,
the training set consisted of the full training sets from C, 7° and half (randomly selected) of

the training set from each of the C| 79 and C| T* context-token combination sets.

- Exposed-C>T* : This embedding saw 79 tokens in both C; and C, contexts, but saw T*

tokens only in the C; context. The training set was balanced across contexts here as well.

Performance (%)

Test set Zero-shot  Exposed-C,T*  Exposed-C,T™
CI'+GT 9744 97.02 98.0

C\T 95.72 99-7 6116

C,T* 95.78 67.71 99.96

Table 8.13: Biased exposure: Results from InferSent embeddings augmented with different training sets that manipulate the
co-occurrence of context and token.

All three models received the same number of training examples, with equal numbers of sentence pairs
from both contexts C and C,. They all also saw 7" noun phrases appear in both contexts. The three
models only differed in which contexts 7" noun phrases appeared during training. The control model
never saw 7™ noun phrases, Exposed—CT* only saw them in the C; context and Exposed—C>T* only

saw them in the C, context. All of these were then tested on the same held-out test set. We see from

SNLI performance and carry out our experiments using fine-tuned augmentation rather than full retraining (see the
Section ‘Augmenting the learning environment’ for details on these). This is computationally a lot cheaper.
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Table 8.13 that all three models generalize well to held-out test examples involving previously unobserved
combinations of 7° noun phrases in both contexts (first row). This is consistent with our initial results
on augmentation (see section ‘Augmenting the learning environment’). Further, the control (zero-shot
reasoning) condition that never saw 7* noun phrases in training generalizes well to all the test examples
with T* noun phrases (first column). This is consistent with our results on zero-shot generalization (see
section ‘Zero-shot reasoning’).

We now turn to generalization performance when tokens were seen before but only in a specific context
(second and third columns in Table 8.13). We discuss the results for the model Exposed—C T (that saw T~
noun phrases in C type comparisons), a symmetric discussion applies also to Exposed—C>T*. W found
that Exposed—C; T* performs well on held-out test examples from the C; T category (99.7 %) — as consis-
tent with our original experiments with augmentation. However, we found that it fails to generalize very
well to T* type noun phrases in the C; context, with a significant drop in performance (67.71 %). The cru-
cial comparison is that this low performance is also significantly worse that that of the zero-shot control on
the same test set (95.78 %). Neither of these have seen T* phrases in the C; context — yet the control gener-
alizes very well, while the Exposed—C T™ fails to. This indicates that while the representations learned can
generalize well to previously unseen tokens, this generalization is poorer to tokens that have in fact been
seen before, but only in a different context.

This indicates that our representations do learn something akin to belief bias, where the context in
which tokens have been seen (even within the right syntactic category) can influence how abstract logical
rules (like in Table 8.1) generalize to them. This suggests potential directions for research on modeling how
belief bias in humans arises. However, it is crucial to point out that although humans do exhibit such con-
text tying, the effects are mostly observed in children™® and under time pressure / cognitive load™®. The
co-existence of such a fast heuristic strategy (that potentially suffers from belief bias), and a slower delibera-
tive strategy (that can perform abstract reasoning) is a well-studied and popular model for representations
and decision rules in humans™®*»"7. Thus, although people have a tendency towards belief bias, they are

able to overcome it and engage in abstract reasoning, which our machine-learned representations cannot

do.
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This raises a new concern about the scalability of augmentation as a general approach to learning sys-
tematic representations in such tabula rasa machine-learning systems. There are infinitely many possible
sentences that all follow the rules of syntax, so observing tokens in contexts that one has not often seen
them in, but where they are syntactically valid, is likely to occur often. Our new findings show that while
zero-shot reasoning to previously unobserved tokens works in certain cases, these tabula rasa systems may
tie an observed token to the small fraction of contexts in which it has been seen. This hinders generaliza-
tion to cases where this token occurs in a new context. In order for every token to have been observed in
every context, a combinatorially large amount of augmented training data would be required, potentially

making this approach unfeasible for achieving the kinds of systematic representations humans have.

8.7 DiscussioN AND FUTURE WoORK

In this paper, we carried out a case study in the use of methods from cognitive science and psycholin-
guistics to better understand machine-learned representations. We developed minimal cases in a natural
language inference task that test for some aspects of abstract relational structure in sentences. We used
this diagnostic tool on large-scale state-of-the-art sentence embeddings* to not only demonstrate its lack
of abstract composable structure, but also provide insight into the representations and decision criteria
actually learned. This approach led us to isolate the use of some simple heuristics, which we then traced
to structural regularities in the training distribution. This allowed us to demonstrate the strong effect the
training data has on the representations learned. We then augmented this training environment with so-
called adversarial examples such that simple heuristics like the ones we found are no longer ecologically
valid. We found that such augmentation leads the system to learn some forms of abstract relational struc-
ture. Notably, we found that one of the traditional holy grails of systematicity —zero-shot generalization
of learned rules to new, previously unseen words—can be partially achieved using appropriate augmen-
tation. Further tests, however, revealed limitations to the breadth of this generalization. We found that
while zero-shot generalization to previously unseen words works, generalizations to words that have previ-
ously been seen in a different context, suffers. This gives us another measure for the extent of systematicity

in representations—a phenomena we call ‘context-tying’. We discussed the relationship between this ef-

214



fect and findings in human cognitive psychology where semantic beliefs about the real-world can interfere
with flexible inferences supported by abstract logical representations™®. This parallel suggests new ways
to model this psychological phenomena”. The presence of context-tying in the machine-learned represen-
tations indicates that combinatorially large amounts of augmentation will likely be required for a tabula
rasa unstructured neural network model to learn an entirely systematic representation from data.

These results suggest many directions for future work. We showed how the issue of context-tying bodes
poorly for the scalability of using only training set augmentations to achieve human-like systematic repre-
sentations. Recent work, however, suggests such adversarial mechanisms in the human brain 38 This mo-
tivates further research on how this approach might be made more scalable. We studied the representations
learned from a fixed amount of augmentation and training. An important step forward is to better under-
stand how systematicity in these representations evolves over the course of augmented training, and exactly
how much augmentation is really needed. Another important problem is to understand what augmenta-
tions work best. To that end, a promising direction is to integrate our approach, where augmentations
are generated using existing knowledge about analogous representations in humans, with approaches that
learn to generate such adversarial augmentations *"*7>49"

Human infants are not as tabula rasa as models like InferSent but rather encode useful inductive bi-

ases 308:347:02,278,405 Building such biases into our models 265,126

9617 is a promising direction towards scalably
learning systematic representations. We also showed how analysis and controlled testing for heuristic strate-
gies in the learning environment can provide rich insights into the representations learned. Such analyses
could also be used to improve learning and subsequent performance by leveraging this underlying struc-

ture 421,422,161,296

. Finally, we leverage methods from cognitive psychology to introduce a new structured
test dataset (the Comparisons dataset) as well as a new metric (context-tying) for sentence representations.
Rather than the traditional single-dimensional metrics of the accuracy achieved on ad-hoc test datasets, our
approach provides insights into the kinds of mistakes made and therefore a more principled and nuanced

480,290,257,280:300,164 ° A metric like context-tying is not

ways to benchmark artificial systems against humans
bound to the domain of language, and can also be used to benchmark systematicity in other domains that

benefit from abstract compositional representations — like scene understanding*»**# or structured plan-
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ning****. Future work should pursue other such diagnostic metrics, to build towards a comprehensive
suite of testable criteria for exactly what constitutes human-like representations, and also to further inform

which aspects of these we wish to emulate in artificial systems.
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Leveraging ecological rationality to learn how

to learn

The study of the role of the environment in the kinds of inference strategies intelligent systems learn opens
up the possibility of leveraging this insight to build artificial systems with desirable learning properties. In
the previous Chapter we saw how standard machine-learning approaches — which are based on optimiza-
tion of a cost function in expectation over several training examples — are susceptible to structure in the
space of queries, and can learn ecologically rational heuristics. We also saw that augmentations to the en-
vironment that alter the ecological validity of the original heuristics leads to more generalizable solutions.
This motivates a new direction of research. Traditional approaches to building artificial intelligence focus
on engineering new models and architectures that can make more efficient use of computational resources
to learn complex concepts and behaviors, on fairly standardized datasets. By considering the role of the

environment in shaping inference, we open up a new set of ways to engineer artificially intelligent systems
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by directly manipulating their training environment.

Meta-learning, or ‘learning to learn’*®#" is an approach in machine-learning where rather than learning
to perform a single task, systems encounter series of related tasks. Over this experience they learn common-
alities across these related tasks that allow them not only to become better at solving each task at hand, but
also to solve previously unobserved tasks from the same distribution, with little new experience. This
dramatically reduces the sample complexity of machine-learned algorithms, enabling them to perform so-
called ‘few-shot’ learning +**%,

I will focus on a different aspect of meta-learning. In this chapter, I show how one can combine the
framework of learning inference procedures itself from data, with the insight that the training environment
largely controls the representations acquired, to elicit complex inference behaviors from very simple models
simply by engineering its training distribution.”® In particular, I will demonstrate how a simple neural
network architecture, trained with trial and error learning from reinforcement, can exhibit causal reasoning
and active information seeking behaviors. The absence of causal sensibilities in artificial intelligence has
been along standing criticism of the current approaches to it like machine learning. 3##+3+* I show that agents
trained this way can learn strategies that effectively probe, uncover, and leverage the specific kinds of causal
structure in their environment to perform causal reasoning in related, held-out tasks in order to obtain
rewards. They can also select informative interventions, draw causal inferences from observational data,
and make counterfactual predictions. This work lays the groundwork for causally directed, structured
exploration in artificial intelligence using agents that can perform and causally interpret experiments in
their environments to generate their own data, much the way human children do™”.

I will also discuss how this direction can also offer new insights into human cognition. Discovering
and exploiting the causal structure in the environment is a crucial challenge for intelligent agents and is
present in human children, rats, and even some birds*¢7"727%325¢_ However, there is much debate about
the origins and form of such causal reasoning in natural intelligence 47938 The emergence of causal rea-
soning and intervention strategies from simpler reinforcement learning algorithms using a meta-learning
framework provides a possible model for how causal reasoning emerges. Empirical findings in human be-

havioral research also suggest the use of context-dependent heuristic strategies in how adults implement
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causal inference. A meta-learning model of causal inference could explain some of these findings via similar
mechanisms as those studied previously in this thesis for the emergence of ecologically rational heuristic

strategies in humans and machines (Chapters 7 and 8).

9.1 META-LEARNING CAUSAL REASONING

Real-world situations often require us to reason about cause and effect. Although causal reasoning has
commonly been touted as an essential component of natural intelligence, characterizing these abilities in
humans and understanding how they emerge and develop through childhood are still active areas of re-
search in cognitive science and psychology +7°*.

Empirical work in human developmental research suggests that causal knowledge, and the ability to ac-
quire and exploit it, might not necessarily reflect the operation of some general and innate algorithm, but
instead emerges through Iearning398’3°3’4°’56.* Evidence from studies in adult causal reasoning also show
that their causal theory is not entirely normative, and is instead graded and often tends towards associative
reasoning365’3“"‘2’n4. Further, these observed behavioral patterns are not consistent and show significant
variation depending on mechanisms*”, and exposure**. The theory that causality is learned from experi-
ence offers a potential explanation for these findings — different experiences potentially support different
kinds and extents of causal reasoning, and exact normative causal inference may not universally be the best
adaptation to all aspects of the world humans operate in.

This gives rise to the question of what learning mechanisms allow causal understanding to be acquired
from experience. In this work, we demonstrate how causal reasoning can arise in agents trained using meta-
learning simply through interaction with environments that contain causal structure. In particular, we use
a “meta-reinforcement learning” framework *>47. We chose reinforcement learning (RL) as the base learn-
ing paradigm since RL is based on interactions of an agent with the environment through actions. This
allows for interventions which are an essential part of causal reasoning. This methodology has also been

shown to give rise to complex policies that exploit structure in the task distribution, such as negotiating

281

“While studies suggesting innate causal understanding exist**>*%, it is nonetheless a valuable direction to better

understand how a notion of causality and causal inference might be learned.
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the explore-exploit trade-off in bandits 7>472, using episodic memory**, and amortizing Bayesian filtering
to solve sequential problems®*.

A key prediction of learning causality from experience, like in our framework, is that the (causal) in-
ference algorithm learned should reflect the structure of the environment and the data received by the
agent. If normative causal reasoning provides an advantage, and is possible given the observed data and
the structure of the environment, then an agent should be able to learn it. However, other kinds of expe-
riences might lead to different algorithms that vary on the spectrum of how ‘causally-aware’ they are. In
this paper, we test these predictions in 5 experiments. We see that architecturally identical agents can learn
different strategies for reasoning about causal structure depending on the kinds of experiences gathered
during training.

Finally, formal approaches to causal identification (determining the causal graph from data) often re-
quire large amounts of dataB434%3 and inference in the constructed causal graphs is also computation-
ally expensive*. In real-world environments, humans operate under time, data, and resource constraints,
dealing with uncertainty in model structure as well as non-stationarity. Agents that learn aspects of the
learning algorithm directly from experience will adapt to statistical structure in their specific environment
and task, and could utilize useful abstract priors (or inductive biases) from other episodes that can be dif-
ficult to formally specify. Such adaptations amortize much of the computation over previous experience
and could allow better performance than formal approaches under ecological constraints 74555270452,

The purpose of this work is not to propose a new algorithmic solution to causal inference per se. Rather,
we highlight that this is the first demonstration of causally-aware inference procedures emerging from sim-
ple reinforcement learning procedures in an unstructured model through interaction with an environment
the rewards causal understanding. This demonstrates that structured training environments and ecolog-
ical rationality in machine learning can be leveraged to give rise to complex behaviors. Further, we argue
that our meta-learning approach has compelling links to human causal reasoning in terms of a) how a the-
ory of causality could be learned, b) the graded notion of causality in humans, and ¢) resource efficiency by
meta-learning inductive biases. Resource efficient causal inference based on leveraging statistical structure,

is also useful for and an active area of research in machine learning e.g. 4202287342399,
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9.2 BACKGROUND

9.2.1 RELATED WORK

Goodman et al.*® demonstrated how an abstract notion of causality in humans can be learned from ex-
perience, with hierarchical Bayesian inference. Our approach is similar to this as meta-learning can also be
framed as hierarchical Bayesian inference”>. However, these approaches provide complementary advan-
tages: we discuss in later sections how the meta-learning approach outlined here can be combined with
more structured approaches to causal inference, to best leverage these complementary advantages. While
formal theory learning (as in Goodman et al.*?) is systematic and generalizes across domains, it requires
the pre-specification of discrete primitives and an expensive zero order (stochastic search) optimization

40246 A restrictive choice of primitives limits the

to learn the correct theory built from these primitives.
space of possible theories, while a generous choice makes the optimization very expensive. This approach
also leaves open the question of the origin of these discrete primitives and how they might be plausibly
implemented in the brain. Our method avoids these assumptions and instead uses a first order (gradient-
based) optimization method that leverages learning signals from the environment, thus discovering emer-

298 This also provides a basis for modeling the domain/function

gent structure directly from experience
specificity %% seen in humans. Since our model is implemented with a deep neural network, which can
be universal approximators#'**%, it can implement different graded causal theories that don’t conform
to purely normative accounts, in a neurally-plausible distributed representation. This could give rise to
graded causal reasoning behaviors analogous to those seen in humans*$3661214,

Bengio et al** propose a meta-learning approach to utilize explicit, pre-specified statistical properties of
interventions to isolate and disentangle causal variables in a supervised learning setting. Our work shows
how a spectrum of ‘causally-aware algorithms’ can arise from utilizing several different kinds of implicit,
unspecified statistical structure in the environment. Our reinforcement learning approach further allows
the agent to directly interact with the environment to also simultaneously learn an experimental policy

that utilizes this underlying structure. Denil et al® showed that deep reinforcement learning agents can

learn to perform actions to gain knowledge about latent, physical properties of objects, but do not explore
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explicit causal inference.

9.2.2 A BRIEF INTRODUCTION TO CAUSAL REASONING

Causal relationships among random variables can be expressed using causal Bayesian networks (CBNs G) 345,432,80
Each node X; corresponds to a random variable, and the joint distribution p(Xj, ..., Xy) is given by

the product of conditional distributions of each node X; given its parent nodes pa(X;), i.e. p(Xi.y) =
TTY, p(Xilpa(xy)).

The edges of G encode causal semantics: a directed path from X, (cause) to X, (eftect) is called a causal
path. The causal effect of X, on X is the conditional distribution of X, given X, restricted to only causal
paths. This restriction is an essential caveat, since the simple conditional distribution p(X,|X) encodes
only correlations (i.e. associative reasoning). Intervening on a node X, corresponds to removing its con-
nection to its parent nodes pa(X. ), and fixing it to some value Cyielding a new CBN G_, x, —¢. The causal
effect of X. on X, is given by the conditional distribution in this new CBN. This distribution is denoted
pox=c(Xe|Xe =C) "

An example of CBN @ is given in Figure 9.1a, where E represents hours of exercise in a week, H cardiac
health, and 4 age. Random variables are denoted by capital letters (e.g., E) and their values by small letters
(e.g., e). The causal effect of £ on H is the conditional distribution restricted to the path £ — H, i.e. ex-
cluding the path E <— 4 — H. The variable A4 is called a confounder, as it confounds the causal effect with
non-causal statistical influence.

Simply observing cardiac health conditioning on exercise level from p(H|E) (associative reasoning) can-
not answer if change in exercise levels cause changes in cardiac health (cause-effect reasoning), since there
is always the possibility that correlation between the two is because of the common confounder of age.

The causal effect of E = e can be seen as the conditional distribution p_,p—.(H|E = €)' on the inter-

"In the causality literature, this distribution would most often be indicated with p(X,|do(X, = C)). We prefer
to use p_,x,.=c(Xc|X. = C) to highlight that intervening on X, results in changing the original distribution p by
structurally altering the CBN.

"In the causality literature, this distribution would most often be indicated with p(H|do(E = e)). We pre-
fer to use p_g=.(H|E = e) to highlight that intervening on E results in changing the original distribution p, by
structurally altering the CBN.
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p(E\A)  p(HIAE)  O(E—e) p(H|A,E)
(@ ®)

Figure 9.1: (a): A CBN G with a confounder for the effect of exercise (E) on heath (H) given by age (4). (b): Intervened
CBN g—)E:e-

vened CBN G_, p—, resulting from replacing p(E|A4) with a delta distribution d(E — e) (thereby removing
the link from A4 to E) and leaving the remaining conditional distributions p(H|E, 4) and p(4) unaltered
(Figure 9.1b). The rules of do-calculus*%# tell us how to compute p_,p—.(H|E = e) using observations
from G. In this case p_,p—(H|E = €) = >, p(H|E = e, A)p(A)". Therefore, do-calculus enables us
to reason in the intervened graph G_,g—, even if our observations are from G. This is the kind of causal
reasoning possible in our observational data setting.

Such inferences are always possible if the confounders are observed, but in the presence of unobserved
confounders, for many CBN structures the only way to compute causal effects is by collecting observations
directly from the intervened graph, e.g. from G_, g—, by fixing the value of the variable £ = e and observ-
ing the remaining variables—we call this process performing an actual intervention in the environment.

In our interventional data setting the agent has access to such interventions.

COUNTERFACTUAL REASONING  Cause-effect reasoning can be used to correctly answer predictive ques-
tions of the type "Does exercising improve cardiac health?” by accounting for causal structure and con-
founding. However, it cannot answer retrospective questions about what would have happened. For
example, given an individual i who has died of a heart attack, this method would not be able to answer
questions of the type "What would the cardiac health of this individual have been had she done more ex-
ercise?”. This type of question requires reasoning about a counterfactual world (that did not happen). To

do this, we can first use the observations from the factual world and knowledge about the CBN to get an

"Notice that conditioning on £ = e would instead give p(H|E = e) = Y, p(H|E = e, A)p(A|E = e).
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estimate of the specific latent randomness in the makeup of individual 7 (for example information about
this specific patient’s blood pressure and other variables as inferred by her having had a heart attack). Then,
we can use this estimate to compute cardiac health under intervention on exercise. This procedure is called
the Abduction-Action-Prediction Method**® and is described below.

Assume, for example, the following model for G in Figure 9.1: E = wypA + 1, H = wygA +wgnE + ¢,
where the weights w;; represent the known causal effects in G and & and 7 are terms of (e.g.) Gaussian noise
that represent the latent randomness in the makeup of each individual. These noise variables are zero in
expectation, so without access to their value for an individual we simply use G: £ = wygd, H = wypA +
wgrE to make causal predictions. Suppose that for individual i we observe: 4 = d,E =¢é,H=H.
We can answer the counterfactual question of "What if individual i had done more exercise, i.e. E = €/,
instead?” by: a) Abduction: estimate the individual’s specific makeup with g = h —wyga' — wgge',b)
Action: set E to more exercise €', ¢) Prediction: predict a new value for cardiac health as W = wypd +

wgge' + €.

9.2.3 MEMORY-BASED META-LEARNING

Meta-learning refers to a broad range of approaches in which aspects of the learning algorithm itself are
learned from the data. Many individual components of deep learning algorithms have been successfully
meta-learned, including the optimizer™, initial weight parameters,”®, a metric space **, and use of external
memory*”,

Following the approach of*#7', the entire inner loop of learning is implemented by a recurrent neural
network (RNN), and we train the weights of the RNN with model-free reinforcementlearning (RL). The
RNN is trained on a broad distribution of problems which each require learning. Consider a distribution
D over Markov Decision Processes (MDDPs). We train an agent with memory (in our case an RNN-based
agent) on this distribution. In each episode, we sample a task m ~ D. Ateach step ¢ within an episode, the
agent sees an observation o0y, executes an action a;, and receives a reward 7;. Both a,—1 and r;_1 are given
as additional inputs to the network. Thus, via the recurrence of the network, each action is a function

of the entire trajectory H; = {00, a0, 70, . . ., 011,811,711, 0;} of the episode. Because this function
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is implemented by the neural network, its complexity is limited only by the size of the network. When
trained in this way, the RNN is able to implement a learning algorithm capable of efficiently solving novel
learning problems in or near the training distribution.

Learning the weights of the RNN by model-free RL can be thought of as the “outer loop” of learning.
The outer loop shapes the weights of the RNN into an ”inner loop” learning algorithm, which plays out
in the activation dynamics of the RNN and can continue learning even when the weights of the network
are frozen. The inner loop algorithm can also have very different properties from the outer loop algorithm
used to train it. For example, this approach has been used to negotiate the exploration-exploitation tradeoff
in multi-armed bandits*>#7, learn algorithms which dynamically adjust their own learning rates *7>#7?, and
perform one-shot learning using external memory®”. In the present work we explore the possibility of

obtaining a causally-aware inner-loop learning algorithm.

9.3 EXPERIMENTAL SETUP

Our goal is to demonstrate that causal reasoning can arise from meta-reinforcement learning. Further,
we demonstrate that depending on the kinds of data the agents see during training, the kind of causal
reasoning learned varies. Our agents learn to leverage statistical structure in different kinds of available
information, to carry out different kinds of causal reasoning. In this section, we first briefly formalize how
causal inference depends on the environment,

Difterent kinds of environments support different kinds of causal reasoning. It is often possible to com-
pute p_x,—c(Xe|X;, = C) (i.e. causal reasoning) using observations from G". I investigate this kind of
causal reasoning in Experiment 1 (Observational Environments). However, in the presence of unobserved
confounders (an unobserved variable that affects both X, and X,), this is, in general , no longer possible**.
The only way to compute causal effects p_,x,—c(Xe|X. = C) in this case is by collecting observations
directly from the intervened graph G_,x,.—c. In Experiment 2 (Interventional Environments), I investi-

gate this kind of causal reasoning, by allowing agent to perform interventions on the environment. An

“When the CBN G is known, this process can be formalized as do-calculus®*##¢. In our case the CBN will not
be directly provided, and the agent must simultaneously perform causal identification using samples from G *°*.
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additional level of sophistication comes from counterfactual environments, where the agent must answer
a retrospective question. This requires the additional step of abduction where the individual idiosyncrasy
in the specific case at hand must be inferred and incorporated into the counterfactual prediction. I discuss

these results in Experiment 3 (Counterfactual Environments).

9.3.1 TASK SETUP

In our experiments, we use a simple framework that has some key properties relevant to ecologically realistic
causal reasoning. First, the number of variables over which inference is carried out is small. Second, the
amount of data available is limited. Third, agents can actively seek out information by interacting with the
environment rather than only receiving passive input. This facilitates future work in drawing parallels to
human causal reasoning, as well as permits a simple and clear demonstration of the effects of interest.

In each episode the agent interacts with a different CBN G with N variables. The structure of G is drawn
randomly from the space of constraints described below. Each episode consists of T'steps, which are divided
into two phases: an information phase and a quiz phase. The information phase corresponds to the first
T — 1 steps and allows the agent to collect information from G. Note that G is never directly provided to
the agent, but is only observed through 7' — 1 samples. Further, the agents in the different experiments
are architecturally identical, and give rise to different behavior soley due to the data they receive in the
information phase. The quiz phase, corresponding to the final step 7, requires the agent to exploit the
causal knowledge it accumulated during the information phase. In particular, the agent needs to select
the node with the highest value under a random external intervention. The structure of the quiz phase is
exactly the same for all agents in all experiments.

We generate graphs that have N = 5 nodes and sample the adjacency matrix to have non-zero entries
only in its upper triangular part (this guarantees that all the graphs obtained are acyclic). Edge weights w;
are uniformly sampled from {—1,0, 1}. This yields 3¥V=1/2 = 59049 unique graphs. These can be
divided into equivalence classes, i.e. sets of graphs that are structurally identical but differ in the permuta-
tion order of the node labels. Our held-out test set consists of 12 random graphs plus all other graphs in

the corresponding equivalence classes, yielding 408 total graphs in the test set. Thus, none of the graphs
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in the test set (or any graphs equivalent to these) have been seen during training.

We sample each node, X; € R, as a Gaussian random variable. The distribution of parentless nodes
is N(u = 0.0,0 = 0.1), while for a node X; with parents pa(X;) we use the conditional distribution
pXilpa(X;)) = N(u = 32, wiXj, 0 = 0.1) with X; € pa(X;). We also tested graphs with non-linear
causal effects and larger graphs of size N = 6, see Appendix A.s for details.

A root node of G is always hidden, to allow for unobserved confounders, and the agent can therefore
only ever see the values of the other 4 nodes. These 4 nodes are henceforth referred to as the ‘visible nodes’.
The concatenated values of the nodes, v;, and a one-hot vector indicating the external intervention during
the quiz phase, m;, (explained below) form the observation vector provided to the agent at step ¢, 0; =
[ve, my]".

In both phases, at each step £, the agent chooses to take one out of 2(N — 1) actions. The first N — 1
actions are information actions, and the second N — 1 actions are quiz actions. Both information and quiz
actions are associated with selecting the N — 1 visible nodes, but can only be legally used in the appropriate

phase of the task. If used in the wrong phase, a penalty is applied and the action produces no effect.

INFORMATION PHASE.  The information phase differs depending on the kind of environment the agent
is in — observational or interventional. Here, we discuss the case of the interventional environment.

An information action @, = i causes an intervention on the i-th node, setting the value of X,;, = X; =5
(thevalue 5 is outside the likely range of sampled observations and thus facilitates learning the causal graph).
The node values v; are then obtained by sampling from p_x,=s(Xj.3\;|X; = 5) (where X}, ; indicates
the set of all nodes except X;), i.e. from the intervened CBN G, x, —s. If a quiz action is chosen during
the information phase, it is ignored, i.e. the node values are sampled from G as if no intervention has been
made. Furthermore, the agent is given a penalty of ¥, = —10 in order to encourage it to take quiz actions
during the quiz phase. There is no other reward during the information phase.

The default length an episode is fixed to be T = N = 5, giving an information phase of length of

T — 1 = 4. This episode length was chosen because in the noise-free limit, a minimum of N — 1 = 4

“Observation’ o, refers to the reinforcement learning term, i.e. the input from the environment to the agent.
This is distinct from observations in the causal sense which we refer to as observational data.
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interventions, one on each visible node, is required in general to resolve the causal structure.

QuizPuASE.  The quiz phase remains the same for all the different environments and agents. In the quiz
phase, one visible node X; is selected at random to be intervened on by the environment. Its value is set to
—5. We chose —5 to disallow the agent from memorizing the results of interventions in the information
phase (which are fixed to 4-5) in order to perform well on the quiz phase. The agentisinformed which node
received this external intervention via the one-hot vector m; as part of the observation from the the final
pre-quiz phase timestep, 7 — 1. For steps t < T — 1, m; is the zero vector. The agent’s reward on this step
is the sampled value of the node it selected during the quiz phase. In other words, rr = X; = X, (v_1)

if the action selected is a quiz action (otherwise, the agent is given a penalty of r7 = —10).

AcTIVE vs RANDOM CONDITIONS.  Our agents have to perform two distinct tasks during the informa-
tion phase: a) actively choose which nodes to act on and b) perform casual reasoning based on the obser-
vations. We refer to this setup as the “active” condition. To better understand the role of (a), we include
comparisons with a baseline agent in the “random” condition where the environment ignores the agents
actions and randomly chooses a visible node to intervene upon at each step of the information phase. Note
again that the only difference between agents in these two conditions is the kind of data the environment

provides them.

Two KINDs oF LEARNING.  An “inner loop” of learning occurs within each episode where the agent
is learning from the 4 samples it gathers during the information phase to perform well in the quiz phase.
The same agent then enters a new episode, where it has to repeat the task on a different CBN. Test per-
formance is reported on CBNs that the agent has never previously seen after all the weights of the RNN
have been fixed. Hence, the only transfer from the training to test set (or the “outer loop” of learning)
is a learned procedure for collecting evidence in the information phase to perform well in the quiz phase.
Exactly what this learned procedure is will depend on the training environment. We will show that this
learned procedure can include performing different kinds of causal inference, as well as active information

gathering.
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9.3.2 AGENT ARCHITECTURE

We used a long short-term memory (LSTM) network*? (with 192 hidden units) that, at each time-step
1, receives a concatenated vector containing [0, a;—1, ¥1—1, my| as input, where oy is the observation, a;_
is the previous action, 7,1 the previous reward and m; indicates the external intervention. The outputs,
calculated as linear projections of the LSTM’s hidden state, are a set of policy logits (with dimensionality
equal to the number of available actions), plus a scalar baseline. The policy logits are transformed by a
softmax function, and then sampled to give a selected action.

Learning was by asynchronous advantage actor-critic™. In this framework, the loss function consists of
three terms — the policy gradient, the baseline cost and an entropy cost. The baseline cost was weighted by
0.05 relative to the policy gradient cost. The weighting of the entropy cost was annealed over the course
of training from 0.25 to o. Optimization was via RMSProp with & = 1073, momentum = 0.9 and de-
cay = 0.95. Learning rate was annealed from 9 x 107 to o, with a discount of 0.93. Hyperparameters
were optimized by performing a coarse grid search (2-4 values) over learning rate, discount factor, and the
number of hidden units in the LSTM. Unless otherwise stated, training was done for 1 x 107 steps using
batched environments with a batch size of 1024, using a distributed architecture with roughly 4000 CPUs

for 5 days.

9.3.3 RL BASELINES

We can also compare the performance of our agents to two standard model-free RL baselines.

The Q-total Agent learns a Q-value for each action across all steps for all the episodes. The Q-episode
Agentlearns a Q-value for each action conditioned on the input at each time step [0y, @;—1, ;—1], but with
no LSTM memory to store previous actions and observations. Since the relationship between action and
reward is random between episodes, Q-total was equivalent to selecting actions randomly, resulting in a
considerably negative reward (—1.2474-2.940). The Q-episode agent essentially makes sure to not choose
the arm that is indicated by m; to be the external intervention (which is assured to be equal to —5), and

essentially chooses randomly otherwise, giving a reward close to 0 (0.080 £ 2.077).

229



o8 Q-total

Q-episode
8 05 Optimal
<
0O o4
Y
(@)
8 os | |
©
=5
c
8 02
—
&J I
o a
0 | |
-6 -4 -2 0 2 4 6

Reward Earned

Figure 9.2: Reward distribution for baseline agentsB

9.3.4 OVERVIEW OF EXPERIMENTS

Our three experiments (observational, interventional, and counterfactual environments) differ in the prop-
erties of the node values v; that are observed by the agent during the information phase. This also limits
the kinds of causal reasoning possible within each environment. We measure agent performance using a
function of the reward earned in the quiz phase for held-out CBNs. As discussed in the previous section,
choosing a random node in the quiz phase results in an expected reward of —5/4 = —1.25 since one node
(the externally intervened one) always has value —5 and the other nodes have on average 0 value. By learn-
ing to simply avoid the externally intervened node, the agent can earn on average 0 reward. Since the quiz
phase requires the agent to predict the outcome of a previously unobserved intervention, consistently good
performance on this task in general requires the agent to perform causal reasoning. We will see that per-
formance reflects different extents of causal reasoning and depends on the kinds of environments agents
experience. The rewards are normalized by the maximum possible reward achievable with exact causal
reasoning on that test set. Henceforth, we refer to this measure as the “(normalized) performance”. The
maximal possible reward is calculated by computing the true maximum mean value among all the nodes
in G_,x;, where Xj is the node externally intervened upon in the quiz phase. We train 8 copies of each agent
and report the average performance across 1632 episodes (408 held-out test CBNs, with 4 possible external

interventions). 95% confidence intervals are indicated by the error bars.
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9.4 EXPERIMENT 1: OBSERVATIONAL ENVIRONMENTS

In Experiment 1, the agents are in an environment that does not permit any interventions during the in-
formation phase, agents only receive observations from G. This corresponds to passively observing the
world. This setting permits some limited causal reasoning as outlined in Section ??, and we sought to test
if our agents can learn this. We examine this hypothesis by comparing agent performance to that of an
“Associative Baseline”, i.e. the performance obtained by only using correlations in the environment.

In this experiment, we tested 4 agents: ”Observational”, "Long Observational”, “Active Conditional”
and "Random Conditional”. All the agents have the same architecture and employ the same learning algo-

rithms. The only difference between them is the kind of data they have access to.

OBSERVATIONAL AGENTS : In the information phase, the actions of the agent are ignored. The agent
always receives the values of the visible nodes sampled from the joint distribution associated with G. In
addition to the default 7 = 5 episode length, we also trained this agent with 4 X longer episode length

(Long Observational Agent) in order to measure performance when the agent has access to more data.

CoNDITIONAL AGENTSs : In this case, agents are still not allowed to interact with the environment via
interventions, but they are given access to more informative observations. Specifically, the information
phase actions correspond to observing a world in which the selected node X; is equal to X; = 5, and
the remaining nodes are sampled from the conditional distribution p(Xj.y;|X; = 5). This differs from
intervening on the variable X; by setting it to the value X; = 5, since here we take a conditional sample from
G rather than from G_, X;=5- Therefore, this agent still has access to only observational data, but receives
more informative data, since it can observe samples far outside the likely range of observations. We run
active and random versions of this agent as described in Section 9.3.1. Comparing these two settings allows
us to disentangle whether the agent can learn to exercise control over what data it wishes to observe from

the environment by accordingly choosing informative observations.

AssocIATIVEBASELINE:  Thisbaseline receives the truejoint distribution p(Xj.y) implied by the CBN in

that episode and therefore has knowledge of the correlation structure of the environment. In the quiz
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Figure 9.3: Experiment 1. Agents do causal reasoning from observational data. a) Average performance of the agents
tested in this experiment. b) Performance split by the presence or absence of at least one parent (Parent and Orphan respec-
tively) on the externally intervened node. c) Quiz phase for a test CBN. Green (red) edges indicate a weight of +1 (—1). Black
represents the intervened node, green (red) nodes indicate a positive (negative) value, white indicates a zero value. The blue
circles indicate the agent’s choice. Left panel: The undirected version of G and the nodes taking the mean values prescribed

byp(Xl:N\]»\X} = 75), including backward inference to the intervened node’s parent. The Associative Baseline’s choice is
consistent with maximizing these (incorrect) node values. Right panel: gﬁX/:ﬁ and the nodes taking the mean values pre-
scribed by p_, x,— 5 (XI:N\I-|X} = —5). The Active-Conditional Agent’s choice is consistent with maximizing these (correct)
node values.

phase, this baseline acts solely on this correlational information and chooses the node that has the maxi-

mum value according to p(Xj|X; = —5) with X; the node externally intervened upon.

REsuLTs

The different agents in this experiment are given access to different kinds of data from the same underly-
ing causal structure during the information phase. We are interested in understanding if agents learn to
leverage this information to perform well on the quiz phase. The main conclusion we reach is that, when
given access to informative observations, our agents can learn to perform a form of causal reasoning using
observational data. The Associative Baseline tracks the best performance that can be achieved using only
knowledge of correlationsi.e. without causal knowledge. The Active-Conditional Agent outperforms this
baseline by a non-trivial margin (Figure 9.3a).

To further demonstrate that this improvement is indeed due to causal reasoning, we partition the test
cases by whether or not the node that was intervened on in the quiz phase has a parent (Figure 9.3b). If
the intervened node Xj has no parents, then G = G_, X;» and doing causal reasoning should afford no
advantage over doing associative reasoning. Indeed, the Active-Conditional Agent performs better than
the Associative Baseline only when the intervened node has parents (hatched bars in Figure 9.3b). In Figure

9.3¢, we show the quiz phase for an example test CBN. This highlights that the Associative Baseline chooses
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Figure 9.4: a) Active vs Random Conditional, b)Associative Baseline vs Active Conditional, where intervened node has a
parent

according to the node values predicted by p(Xj.n;|X; = —5), whereas the Active-Conditional Agent
chooses according the node values predicted by p—, x,—s (Xi.3;|X; = 5)).

Comparing the performances of the Active and Random versions of the Conditional Agents, we find
that the active Agent’s performance is slightly but significantly (p = 0.003, Figure 9.4a) higher than the
Random Agent. This indicates that when permitted, the agent learns to generate informative observa-
tions. We also trained a third agent that employs the optimal information gathering policy in the noise-
free limit (acting on each visible node exactly once), and obtained a performance slightly but significantly
(p = 0.008, not shown) higher than the Active agent (although still significantly less than optimal causal
reasoning), indicating that the policy learned by the Active Agent is not optimal. But the differences be-
tween the performances of agents with different information gathering policies is very small, indicating
that learning a data-collection policy does not yield a critical benefit when receiving conditional samples in
this small-data regime.

Agents that receive unconditional observations from G, i.e. the Observational Agents ("Observation”
and "Long-Obs” in Figure 9.3a) perform worse than the Active-Conditional Agent. Note that this is to be
expected since these agents receive less diagnostic information during the information phase. However, the
Observational agent is still able to leverage the information from the 4 unconditional samples it receives
and perform better than the random baseline. Further, when given access to more data (the Long-Obs.
agent) the same agent learns to utilize it, yielding better performance.

From Figure 9.3a, we see that while the Active-Conditional Agent performs significantly above the As-
sociative baseline, it far from the performance utilizing full causal reasoning (= 1.0 on our scale). From

Figure 9.3b, we see that this gap is driven mostly by test cases where the intervened node has a parent.
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While the Active-Conditional Agent’s advantage over the baseline comes from these test cases, it is still not
performing optimally on them. We hypothesize that this is due to the presence of unobserved confounders.
As discussed in Section 22, full causal inference in the presence of confounders is in general not possible
with just observational data. To further investigate this hypothesis, we partition the set of test cases into
those where the intervened upon node has a confounded parent and those with unconfounded parents
(Figure 9.4b). We see that the performance of the Active-Conditional Agent is significantly higher than
the Associative baseline only in cases where the parent is not confounded. Causal inference in the pres-
ence of confounders is only in general possible with interventions. In the next experiment, we discuss the
performance of our agents in an environment that permits interventions.

We also note that the Associative agent has higher performance when the parent of the intervened node
is confounded than when itisn’t (where the performance is not significantly above zero). This could point
to other statistical structure in the environment — for example, if the intervened node has more visible par-
ents (asis true for the graphs with unconfounded parents in Figure 2?), there are more visible nodes strongly
correlated with it due to (incorrect) backward inferences from child to parent. This could hinder the asso-
ciative agent giving lower performance. These findings highlight that there are often unexpected statistical
trends even in putatively formal settings like our distribution of simple CBNs, that could potentially be

leveraged **>*7 by meta-learning agents.

9.5 EXPERIMENT 2: INTERVENTIONAL ENVIRONMENTS

In this experiment, we test if agents can learn to perform causal inference from interventions. In partic-
ular, we are interested in performance in the presence of confounders. The interventional environment
allows the agent to intervene on any visible node during the information phase. The agent’s actions corre-
spond to performing an intervention on the selected node X; and sampling from G_, x; (see Section 9.3.1).
As discussed in Section ??, access to interventional data permits causal reasoning even in the presence of
unobserved confounders, a feat in general impossible with access only to observational data. We test both
active and random versions of the agent (see Section 9.3.1) to disentangle if the agent can also learn to select

informative interventions when the environment permits.
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Figure 9.5: Experiment 2. Agents do causal reasoning from interventional data. a) Average performance of the agents
tested in this experiment. See main text for details. b) Performance split by the presence or absence of unobserved con-
founders (abbreviated as Conf. and Unconf.). c) Quiz phase for a test CBN. See Figure 9.3 for a legend. Here, the left panel
shows the full G and the nodes taking the mean values prescribed by p(X1 :N\/|Xj = —5). We see that the Active-Cond
Agent’s choice is consistent with choosing based on these (incorrect) node values. The right panel shows g_>Xj:_5 and the
nodes taking the mean values prescribed by p_>Xj=_5(X1 N\ |X} = —5). We see that the Active-Int. Agent’s choice is

consistent with maximizing on these (correct) node value.

9.5.1 RESULTS

The agents tested in this experiment differ from agents in previous experiments only in the kind of data
that they have access to. We see in Figure 9.5a that the Active-Interventional Agent’s performance is better

than the Active-Conditional Agent, achieving close to optimal performance.

Random -
| | |

00 02 04 06 08 1.0
Normalized performance

Figure 9.6: Active and Random Interventional Agents

This shows that when given access to interventions, the agent learns to leverage them to perform causal
reasoning. Partitioning the test cases by whether any node has unobserved confounders with other nodes
in the graph (Figure 9.5b), we see that the Active-Interventional Agent performs close to optimal on both
confounded and unconfounded test cases. This confirms our hypothesis that the agent has learned to
perform causal reasoning even in the presence of confounders which the Conditional agents in Experi-
ment 1 could not do. This is highlighted by Figure 9.5¢c, which shows the quiz phase for an example CBN,
where the Active-Conditional Agent is unable to resolve the unobserved confounder, whereas the Active-
Interventional Agent is able to do so. We also see that while the performance of the Active-Conditional

Agent is significantly higher in unconfounded cases than in confounded ones, it is not as high as the per-
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formance of the Interventional Agent, even though inference in the absence of confounders is in theory
within reach of the conditional agent. This could be because causal inference from observations is more
challenging than from interventions, in our setting. In our framework, the final quiz phase node values
are the negative (with noise) of the values observed, if the quiz phase node is intervened on in the informa-
tion phase”. This makes the decoding process significantly easier than if (as with the Conditional cases),
information has to be integrated across several observations in the information phase to perform well in
the quiz phase. When utilizing the statistical structure of the task and environment, interventions are easy
to learn from. Evidence of such behavior has also been noted in humans™+",

Further, we find that the Active-Interventional agent learns to utilize the control it has over what in-
terventions it does, to choose informative interventions: its performance is significantly better than the
Random-Interventional Agent (Figure 9.6). This indicates that when permitted, the agents learns a good
intervention policy to generate informative data. The difference betwee Active and Random is far greater
than in the Conditional case, with the Active Interventional agent reaching ceiling performance. This indi-
cates that in our domain, while causal inference is easier from interventions than observations, it is perhaps

more sensitive to the right intervention policy — learning a policy for information gathering yields a critical

benefit above a random policy, when learning from interventions, in our domain.

9.6 EXPERIMENT 3: COUNTERFACTUAL SETTING

In Experiment 3, the agent was again allowed to make interventions as in Experiment 2, but in this case
the quiz phase task entailed answering a counterfactual question. We explain here what a counterfactual
question in our experimental domain looks like. Assume X; = Zj w;iX; + & where ¢; is distributed
as N(0.0, 0.1) (giving the conditional distribution p(Xj[pa(X;)) = N (32, w;iXj, 0.1) as described in
Section 3). After observing the nodes X>.y (X is hidden) in the CBN in one sample, we can infer this latent
randomness &; for each observable node X; (i.e. abduction) and answer counterfactual questions like ”What

would the values of the nodes be, had X; instead taken on a different value than what we observed?”, for any

"We demonstrate in Appendix A.s that our agents are able to infer from interventions even in non-linear cases
where the decoding is more involved.
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Figure 9.7: Experiment 3. Agents do counterfactual reasoning. a) Performance of the agents tested in this experiment.
Note that performance can be above 1.0 since the counterfactual agent can theoretically perform better than the optimal
interventional baseline, which doesn’t have access to noise information. See main text for details. b) Performance split by
if the maximum node value in the quiz phase is degenerate (Deg.) or distinct (Dist.). c) Quiz phase for an example test-
CBN. See Figures in Main text for a legend. Here, the left panel shows Q_>;(/.:_5 and the nodes taking the mean values
prescribed by p_,x—_5(X;.n;|X; = —5). We see that the Active-Int. Agent’s choice is consistent with maximizing on
these node values, where it makes a random choice between two nodes with the same value. The right panel panel shows

G, x=—s and the nodes taking the exact values prescribed by the means of p_,x.—5(X1.x;|X; = —5), combined with
the specific randomness inferred from the previous time step. As a result of accounting for the randomness, the two previously
degenerate maximum values are now distinct. We see that the Active-CF. agent’s choice is consistent with maximizing on
these node values.

of the observable nodes X;. We test three new agents, two of which are learned: ”Active Counterfactual”,

”Random Counterfactual”, and ”Optimal Counterfactual Baseline” (not learned).

COUNTERFACTUAL AGENTS:  This agent is the same as the Interventional agent, but trained on tasks
in which the latent randomness in the last information phase step t = T — 1 (where some X, = +35)
is stored and the same randomness is used in the quiz phase step # = T (where some Xy = —5). While
the question our agents have had to answer correctly so far in order to maximize their reward in the quiz
phase was "Which of the nodes X5.y will have the highest value when X¢is set to —52”, in this setting, we
ask ”Which of the nodes X.y would have had the highest value in the last step of the information phase,
if instead of having the intervention X,, = +5, we had the intervention Xy = —5?”. We run active and

random versions of this agent as described in the main text.

OrTIMAL COUNTERFACTUAL BASELINE:  This baseline receives the true CBN and does exact abduction
of the latent randomness based on observations from the penultimate step of the information phase, and

combines this correctly with the appropriate interventional inference on the true CBN in the quiz phase.
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9.6.1 REsSULTSs

We focus on two key questions in this experiment. (i) Do our agents learn to do counterfactual inference?
The Active-Counterfactual Agent achieves higher performance than the maximum possible performance
using only causal reasoning (Figure 9.7a). This indicates that the agent learns to infer and apply noise
information from the last step of the information phase. To evaluate whether this difference is driven
by the agent’s use of abduction, we split the test set into two groups, depending on whether or not the
decision for which node will have the highest value in the quiz phase is affected by the latent randomness,
i.e. whether or not the node with the maximum value in the quiz phase changes if the noise is resampled.
This is most prevalent in cases where the maximum expected reward is degenerate, i.e. where several nodes
give the same maximum reward (denoted by hatched bars in Figure 9.7b). Here, agents with no access to
the randomness have no basis for choosing one over the other, but different noise samples can give rise to

significant differences in the actual values that these degenerate nodes have.

] ] ]
Random r ‘ ‘

| | | |
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Normalized performance

Figure 9.8: Active and Random Counterfactual Agents

We see indeed that there is no difference in the rewards received by the Active-Counterfactual and
Active-Interventional Agents in the cases where the maximum values are distinct, however the Active-
Counterfactual Agent significantly outperforms the Active-Interventional Agent in cases where there are
degenerate maximum values. This performance increase is very high since in most cases where the maxi-
mum values are degenerate, this maximum value is close to 0.0. Thus, taking the noise into account gives
the Counterfactual agent a huge relative advantage in these cases.

(ii) Do our agents learn to make useful interventions in the service of a counterfactual task? The Active-
Counterfactual Agent’s performance is significantly greater than the Random-Counterfactual Agent’s (Fig-
ure 9.8). This indicates that when the agent s allowed to choose its actions, it makes tailored, non-random

choices about the interventions it makes and the data it wants to observe — even in the service of a counter-
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factual objective.

9.7 DiscussioN aAND FUTURE WoRK

Learning abstract structural information about the world that generalizes across tasks is an important com-
ponent of natural intelligence underlying its flexibility and data-efficiency. In this chapter, I show that
causal reasoning capabilities can arise from such hierarchical structure learning (i.e. meta-learning) sim-
ply through interaction with an environment that rewards and permits causal reasoning. An important
prediction of our model is that different kinds and extents of causal reasoning can arise depending on ex-
isting structure in the environment. We find that when put in different environments, our agents learn
to: 1) leverage observational data to make causal inferences, 2) leverage interventions to perform causal in-
ference in the presence of unobserved confounders, 3) leverage instance-specific information to perform
counterfactual reasoning, and 4) perform active-learning, i.e. actively generate informative data when the
environment permits it.

Even in this simple domain, we saw evidence of unspecified, non-trivial underlying statistical structure
in the environment, as well as preliminary evidence that our agents utilize it via heuristics. Future work
could further examine the procedures being learned and the kinds of structure being utilized. In our anal-
yses, we compared to baselines and study behavior on diagnostic test-sets to characterize these. Other
work on statistical approaches to learning causal structure *»?**7, as well as methods from neuroscience 472,
could provide further insights into what our agents learn, which could potentially be leveraged for more
efficient causal reasoning. By using an RL framework, our agents learn to take actions that produce useful
information—opening up possibilities for structured exploration, and optimal experiment design. In our

work, we don’t address the causal grounding problem—our agents are told what the relevant variables are.

8,17,128 208,207,105
b

Using models that are more explicitly structured e.g. , and more advanced architectures e.g.
could allow us to scale up to directly inferring more systematic representations from unstructured input,
and perform a larger range of tasks. The unique advantages of our model-free, discriminative approach is

that it learns causal induction (inferring the causal structure, i.e. acquiring “potential knowledge” of the

domain) and causal inference (making predictions about causal events, i.e. converting potential knowledge
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to “realized knowledge”) end to end. Therefore the causal structure implicitly represented is influenced
by the downstream inferences. This is ecologically rational and could allow us to isolate relevant causal
variables in a domain, to then feed into a more structured approach to causal induction, thereby reducing
the computational costs of this search.

A crucial contribution of our work is to consider causal reasoning in natural intelligence not an end
in and of itself but a means to better performance on some downstream task that is easier to specify, in
a world that contains causal structure. In our case this task is acquiring reward in an RL task, but could
be generalized to any other task by simply changing the meta-learning objective. This is a reasonable as-
sumption since causal reasoning exists in humans, and even chimpanzees and rats**7>*? without “formal
instruction” on causality itself. This assumption allows us to frame the acquisition of causal reasoning as a
meta-learning problem, and we highlight how this approach could also capture many qualitative empirical
findings in how causal reasoning is learned and implemented in humans.

This direction of research opens up many interesting directions in cognitive science and psychology.
We focused primarily on varying the kinds of data available to the agent, but there many other ways in
which the agent’s experience will inform the kind and extent of causal reasoning exhibited. In this study,
we uniformly sample the space of CBNs and external interventions, but ecological distributions of causal
structures and queries are not uniformly distributed and vary significantly from domain to domain. Our
meta-learning framework adapts to such structure in the training distribution **#%#7* and could parallel
the domain/function specificity of human causal reasoning**+>%. Different distributions of queries can
also create situations where simpler associative strategies are largely indistinguishable from full causal rea-
soning ™. For example, as in Experiment 1, when the intervened upon node has no parents, causal rea-
soning is equivalent to associative reasoning. Further, in most real-world tasks, causal inference is usually
not useful in and of itself, but rather for some downstream task. The reward in our study also depended
only indirectly on causal reasoning. While in our task, causal reasoning is still an optimal strategy, this
may not always be the case. These factors may result in different optimal strategies that vary on the spec-
trum of how “causally-aware” they are, and allow parallels to the graded notions of causal inference in

humans 112,114,365,366 .
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Conclusion

In 1955, Herb Simon put forth the challenge facing more realistic theories of human intelligence:“Broadly
stated, the task is to replace the global rationality of economic man with a kind of rational behavior that is
compatible with the access to information and the computational capacities that are actually possessed by
organisms, including man, in the kinds of environments in which such organisms exist.” This thesis hopes
to do exactly that. By taking into account the circumstances under which intelligent behavior manifests —
both the limitations on resources, structure in the environment, and how these two interact — I provide
new computational models of human probabilistic inference, that are psychologically plausible. Without
such plausible algorithmic solutions to rational or normative inference in structured Bayesian models, they
remain unsatisfying as models of human cognition. We also cannotleverage their many desirable properties
in building intelligent machines. The ideas furthered in this thesis, of leveraging environmental structure
via flexible re-use of previous computations to simplify inference, bring Bayesian models of intelligent

behavior back into business.
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Further, these models parsimoniously explain a wide range of empirical findings about non-normative
inference. In particular, they explain how humans can sometimes be so close to optimal, and at other times
(with the same cognitive resources), so biased — and biased in so many different context-sensitive ways.
These insights also lead to entirely new ways to understand and engineer artificial systems, via manipulation
of the environments in which they learn and function. This confluence suggests links between the analysis

of ecological rationality in humans and in machines, leading to new lines of research into understanding

both.

OrPEN QUESTIONS AND FUTURE WORK

MODEL ACQUISITION  An important question not addressed directly in this thesis is of how structured
probabilistic models are acquired in the first place. In this thesis, we distinguish between ‘learning about
the world’ or ‘potential knowledge’, and ‘learning to think’ or ‘realized knowledge’. Most of the work
on human cognition presented here operates solely on the second, i.e. in the realm of internal processes
within the mind, affer all external knowledge has already been gained and represented as a probabilistic
model. In some of the studies presented here, we verbally provide the data generating process, i.e. the
underlying structured probabilistic model (for example the urn experiments in Chapter 7), and in others,
we assume this is known from pre-experimental experience (for example in the scene statistics domain used
in Chapters s - 7). How might these structured Bayesian models be acquired via direct interaction with the
environment?

One way to look at model acquisition is as a higher level probabilistic inference. That is, the represen-
tation we acquire of how a domain works is by searching over some space of possible models (a prior over
models), assigning probabilities for how well they explain the observed data (the likelihood of that model),
and then choosing a model such that it has high posterior probability. This is of course, also a very chal-
lenging inference problem. +°*+¢ In addition, how do we know what a good hypothesis space of models is?
One suggestion is that these are not from some pre-existing hypothesis space but rather built from struc-
tured primitives. Several findings show that many primitives of structure might be innate and available

at birth before any interaction with the environment. #>°° However, this still leaves open the question of
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how we search over the large space of models that can be built from these primitives, to find the right one
for each domain. It also passes the buck further down to how we know what the right primitives are, and
how (potentially via evolution) such primitives came to be innately encoded.

Explicitly structured probabilistic models however have several desirable features - like efficient learn-
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ing*7, greater generalizability>*°, and an accurate representation of uncertainty’*°. An important direc-
tion of future research therefore is to find ways to harness these advantages while avoiding the prohibitive
costs (and resulting implausibility) of learning these models from scratch via search. One possibility is that
structure in the environment (and amortization procedures that reflect this structure) can alleviate these

inference costs — in the same way this thesis suggests that it could alleviate the intractability of inference

within a learned model.

TWwoO KINDS OF LEARNING  Another interesting direction is to consider the interaction between learning
about the world, and learning to make inferences in it. Although we have so far treated these entirely
separately (at least in our studies of human cognition), in most real world domains, these are not separate
tasks. In fact, we almost never learn models directly, we learn them as an intermediary towards performing
some task that requires an inference within that model.

As an illustrative example, we consider a classic example from reinforcement learning, of latent learning
in Tolman’s rat mazes***. Here, rats learned to navigate mazes of very specific shapes, to get to a reward.
Simply memorizing the actions required to get to the reward in these mazes would have been sufficient
to always receive the reward. Tolman** found however that rats developed a more abstract model, or
‘cognitive map’ of the spatial position of the reward with respect to their starting point. This is evidenced by
the finding that the rats find the reward by navigating directly to it, in close to a straight line, when the walls
of the maze are removed . In this case, learning the model is like learning the spatial position of the reward
with respect to you. This captures something about the underlying structure of the environment (spatial
in this case), and this knowledge can generalize to give reasonable performance in different situations —

like starting from a different initial points, differences in the structure of the maze, or obstacles in the

“The actual experiment did not remove the walls of the maze but replaced it with a maze that contained several
radial arms, and found that rats take close to the shortest path to the reward by choosing the right arm.
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way. Inference in this model corresponds to planning ones actions (within constraints like walls of mazes,
and wanting to minimize energy spent) in order to get to the reward. The task that the rats are trained
on only really requires the ability to make some very specific inferences. There is no explicit requirement
to represent any additional structure like the spatial structure of the environment. But we see that they
acquire such a representation nonetheless. In other words, they could learn a purely discriminative model
(for the purposes of the task they are trained on), but instead learn an at least partially generative model.
This allows it to generalize beyond the specific task it was trained for, and acquire the reward efficiently
when the walls of the maze are removed. This is characteristic of several domains — while abstract models
are usually useful for generalization, they are rarely explicitly taught or tested. Rather, they are acquired
as an implicit intermediary to a task that requires some specific inferences in such a model. In this thesis,
we assume that the model has already been learned, and the only remaining challenge is in the inference.
In the previous section we discuss how probabilistic inference can be used to learn the model. However,
jointly learning a structured model for the environment, and learning to perform efficient inferences in
this model, could bring with it own set of unique predictions and implications that future work should

explore.

SHAPING OUR ENVIRONMENTS  We have assumed that the interaction between the environment and
the intelligent systems that live and learn in it is one-directional, only considering the impact of the en-
vironment on the procedures learned by the agents that interact with it. However, intelligent agents fre-
quently influence their own environments. This two-way interaction is especially pertinent in domains
like language where the production mechanisms themselves are shaped and limited by human cognitive
abilities — our ability to learn and understand compositionally structured languages is learned using data
created by other humans’ ability to produce these compositionally structured languages. The role of shap-
ing one’s environment is also relevant in other domains that are not as directly produced by humans. As far
back 1956 in the study of category and concept learning, Bruner*® presented a distinction between learn-
ing through passive reception of observations and through active selection of observations in support of
hypothesis testing. Much subsequent work has expanded upon the significant impact that active infor-

mation seeking behaviors have on learning >+, suggesting that even very young children can and do
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engage in behaviors that shape their own learning environments**>7%5.

A ‘rational analysis’ approach to active learning posits that humans maximize information gain, subject
to the costs of information gathering. However, similar to our quandaries about exact probabilistic infer-
ence in humans, exactly computing information gain is nearly intractable. Further, several studies often

find biases in people’s information seeking tendencies****

. Future work should consider how processes
like caching, re-use and amortization that can ease the computational burden of normative information
seeking, replicate the specific kinds of biases observed, and potentially lead to new rational process models

of active learning.

GROUNDING THE THEORY A key aspect of this thesis is to more explicitly consider the role of memory
in human inference. Even within this framework of using memory as a computational resource, it is yet to
be understood what the contributions of different memory mechanisms (episodic, semantic, procedural,
etc.) might be. This thesis has been largely agnostic to the specific kinds of re-use and how they might be
realized in human memory systems. Future work can more explicitly investigate these different kinds of
re-use. In the same vein, biased judgments have been studied extensively, and several models for these have
been proposed. We have discussed some of these alternatives in this thesis, as well as how many of them
fit into the broader framework of ecological rationality via amortized inference. Future work can work
towards better understanding how these many models and different memory mechanisms fit together and
inform each other.

Another consideration is how such theories might be implemented in the brain. Future work should
look for signatures of amortization in the brain, and better understand which parts of the brain are in-
volved in the different kinds of learning discussed here. We have briefly discussed the neural plausibility
of approximation algorithms like Markov chain Monte Carlo, and variational inference in Chapter 3. A
main proposal of this thesis is a hybrid model that incorporates aspects of both algorithms. Future work

should consider how such hybrids might be realized in networks of neurons.

CLOSING THOUGHTS  Amortization as an approach to ecological rationality also has much broader, and

turther-reaching implications for cognitive science, beyond the topics studied in this thesis. A better under-
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standing of the underlying computational principles of ecological rationality can shed light on one of the
longest-standing debates on the basis of human cognition: the conflict between compositional structure
and simple statistics, in models of cognition.

in structured representations permit the kinds of flexible general-

Systematicity and compositionality
ization, far beyond direct experiences, that humans commonly exhibit. 181,408,484,400 T g flexibility however
comes at a cost. While systematic and compositional representations allow recombination of its compo-
nents in many different ways to provide solutions to new problems, inferring the solution to a particular
given problem — by inferring the right combination of components in this large space — is very expensive.
In other words, these models are ‘generative’, having an explicit representation of the underlying generative
process that produced the observed data. However producing a response to a specific query — or making
an inference — based on this information, requires additional computation.

*%% on the other hand, do not invoke an intermediate generative model. They

Statistical approaches®”
instead directly learn to provide responses to queries. Without access to an explicit generative model, we
lose the potential to generalize flexibly beyond direct experience. However, ‘making an inference’ is no
longer a challenge, since these approaches directly provide responses to queries. In other words, statistical
models are usually ‘discriminative’: they do notseparately represent the underlying data generating process,
and instead directly model the mapping between observations and response.

While structured generative models give very good generalization, inference in them is often intractable.
Statistical discriminative models on the other hand are poor at generalization but can make fast, often
heuristic, inferences. Each of these therefore have been evoked to model different aspects of human cogni-
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tion across several fields including word semantics #*%77"%, probabilistic judgment*>+*, concept learning

396498 and reinforcement learning 4775,

and categorization’®

A crucial observation however is that these two possibilities simply populate the far ends of a spectrum
in the trade-oft between generalization and tractable inference. While intelligent systems do generalize
flexibly, they need not generalize indiscriminately. They should adapt to the environment to choose what

kinds of generalizations are important, and sacrifice other generalizations (in favor of statistical pattern

recognition, or memorization) in the interest keeping inference tractable. This allows for intermediate
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models that lie between the two extremes of entirely compositional generative representations, and entirely
statistical discriminative ones.

Where on this spectrum is ‘optimal’ for an environment or domain, will be determined by the ecolog-
ical distribution of queries we encounter in it. We do not represent the world in its full generality, rather
we represent the world conditioned on what we will have to do with that representation, which is usu-
ally so to respond to specific distributions of queries. This thesis provides a powerful new theory for how
such ecological rationality can come about via the amortization of previous computations. This provides a
mechanism for learning representations that could trade-oft flexible generalization and tractable inference,
in a domain-sensitive way. These insights pave the way toward hybrid models that combine the comple-
mentary advantages of structured generative models and statistical discriminative models. Not only does
this have significant implications for our understanding of human cognition, these insights can also be

used to build better, and more human-like, artificial intelligence.
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Supplementary Materials

A1 TwO REUSE SCHEMES

The two schemes for reuse described in Figure 6.3, summary-based and sample-based amortization, are
described below in greater detail.

In sample-based amortization, we simply add samples generated in response to one query (Q1) to the
sample set for another query (Q2). Soif N1 samples were generated in response to Q1, and N> new samples
are generated in response to 92, in the absence of amortization, the responses to the two queries Q1 and

Q2 would be generated as follows:
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Under the sample-based amortization scheme, the response to Q2 is given by a calculation carried out

over all N1 + N; equally weighted samples.

Under this scheme, all the computations carried out for Q1 are available for flexible reuse in the com-
putation for Q2.

In summary-based amortization, we reuse a summary statistic computed from Q1. This strategy is only
applicable to problems where the answer to Q2 can be expressed as the composition of the answer to Q1,
and an additional simpler computation. For example if Q1 is “What is the probability that there is an
object starting with a Cin the scene?”, Q2 could be “What is the probability that there is an object starting
with a C or an R in the scene?”. In this case, the N1 samples generated in response to Q1 are summarized
into one probability (“the probability of an object starting with C”), N, new samples are generated in
response to a simpler query (“the probability of an object starting with R”), and these two numbers are
then composed (in this case simply added) to give the final estimate for Q2 (“the probability of an object

starting with C or R”).
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Under this scheme, only the final product of the computation carried out for Q1 is reused in the calcu-

lations for Q2.

A2 RECOGNITION NETWORK ARCHITECTURE

We used a three-layer neural network architecture as the function approximator for the approximate pos-
terior. Each unit took as input a linear combination of all the units in the layer below, and then passed this
linear combination through a nonlinear transfer function. The details of this architecture varied depend-
ing on the structure of the inference problem.

When the hypothesis space was binary, the output of the network was a Bernoulli parameter; thus, the
network implemented a function f, : D + [0, 1], where D denotes the data space, and the variational
approximation was Q,(4|d) = Bernoulli(%;f,(d)). The data space was modeled by s input variables:
one for the prior parameter, two for the likelihood parameters, and two for the strength and weight of
the evidence, and the output space consisted of a single output that represented a Bernoulli parameter.
The hidden units use a radial basis function non-linearity, the mean and variance of which were also opti-
mized, and the activation function at the topmost layer was a softmax in order to ensure the final output
lay between o and 1. To vary the capacity of the network, we vary the number of hidden units; unless oth-
erwise mentioned, networks contain 1 hidden unit since that provides the strongest bottleneck and best
demonstrates the effects of interest. We use 2 hidden units only in the replication of the empirical evidence
reviewed in Benjamin *. Some of the experiments therein are more complex (larger and more varied space

of priors, likelihoods and sample sizes) than the subsequent experiments we model, and we found that
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while a network with r hidden unit still captured the qualitative patterns of interest in the empirical results,
it could not capture some of the variation and therefore looked visually less similar to the empirical data.
We also use a variant of this function approximation architecture in the section on memory-modulated
subadditivity, where the number of inputs increases to 12, and the output is a multinomial distribution
of dimension 12. Learning a 12 dimensional multinomial is much harder than learning a binomial, so we
increase the number of hidden units to 10.

When the hypothesis space was real-valued, the output was a mean and log standard deviation parametriz-
ing a Gaussian distribution; thus, the network implemented a function f,, : D R2, and the variational
approximation was Q,(h|d) = N (h;f,(d)). The data space was modeled by three inputs: the prior
mean, the mean of the evidence and the number of samples, the output space consisted of two outputs
that represented the mean and variance of a normal distribution. The hidden units used a hyperbolic tan-
gent activation function, and the activation function at the topmost layer made no transformation at the
node representing the mean, and took an exponential at the node representing the variance to ensure that

the final output was greater than zero.

A.3 HIERARCHICAL BAYESIAN MODEL IN THE CONTINUOUS DOMAIN

Here we discuss the predictions of a hierarchical Bayesian model that learns about the underlying global
variances from experience. We refer to it henceforth as the L-HBM, for learned hierarchical Bayesian model.
We find that it cannot reproduce the observed effect of differentially strong reactions to data between the
high and the low dispersion condition.

The L-HBM assumes the true generative model described in the section ‘Extension to a continuous
domain’. The output yy, for trial 7 in a block & is drawn from N (my, s). These my values are distributed
over blocks as N (mg, v).

The true values of these parameters are as follows: s = 25,mg = 40 for all participants. In the high
dispersion condition v = 144 and in the low dispersion condition v = 36. The HBM discussed in the
main text receives these correct values for the parameters. The L-HBM discussed here has to infer these val-

ues. The prior distributions we assume for my, s, and v in the L-HBM are NV (40, 10), half-Cauchy(0, 10),
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and half-Cauchy(0, 10), respectively. It then receives the observations yy, and can form a joint posterior
distribution over my, s, and v. With these it can then form a posterior predictive distribution for my, in
that block, which we use as the predicted output on each trial.

We compared the resulting updates of this L-HBM to the updates from the HBM in the main text that
knows the true parameters of the underlying generative distributions (see Fig. A.1). For both the high and
the low dispersion conditions, the updates closely follow the diagonal line of y = x. This indicates that
inferring mo, s, and v (in addition to my) does not result in significant differences in the updates in an
ideal observer. Crucially, the L-HBM does not replicate the main qualitative effect of a significant differ-
ence in updates between the high and the low dispersion condition, for the same rational update. This
means that—unlike our Learned Inference Model—a hierarchical Bayesian model cannot reproduce the

qualitative effects observed in the experiment.

=== High dispersion === Low dispersion

151

101

A Model

0 5 10 15
A Rational
Figure A.1: Performance of the L-HBM. Simulation results of a hierarchical Bayesian model that infers the underlying param-
eters in the the experiment reported by Gershman 187 The Y-axis shows the L-HBM’s updates from prior to posterior (AData)

and the X-axis shows the update of a rational (hierarchical) model (ARational; a HBM that knows the true parameters for the
underlying generative process). Error bars represent the standard error of the mean. Gray line represents y = x.
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Figure A.2: (a): Directed acyclic graph. The node X3 is a collider on the path X; — X3 <— X, and a non-collider on the
path X, — X5 — X4. (b): Cyclic graph obtained from (a) by adding a link from X4 to Xj.

A.4 CausaL BAYEs NETs

By combining graph theory and probability theory, the causal Bayesian network framework provides us
with a graphical tool to formalize and test different levels of causal reasoning. This section introduces
the main definitions underlying this framework and explains how to visually test for statistical indepen-
dence 344324913317

A graph is a collection of nodes and links connecting pairs of nodes. The links may be directed or undi-

rected, giving rise to directed or undirected graphs respectively.

A path from node X; to node JX; is a sequence of linked nodes starting at X; and ending at X;. A directed
path is a path whose links are directed and pointing from preceding towards following nodes in the se-

quence.

A directed acyclic graph is a directed graph with no directed paths starting and ending at the same node.
For example, the directed graph in Figure A.2(a) is acyclic. The addition of a link from X4 to X gives rise

to a cyclic graph (Figure A.2(b)).
A node X; with a directed link to Xj is called parent of X;. In this case, X; is called child of X;.

A node is a collider on a specified path if it has (at least) two parents on that path. Notice that a node can
be a collider on a path and a non-collider on another path. For example, in Figure A.2(a) X3 is a collider

on the path X1 — X3 < X, and a non-collider on the path X, — X3 — Xj.

A node X; is an ancestor of a node X if there exists a directed path from X; to Xj. In this case, Xj is a descen-

dant of Xj.
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A graphical model is a graph in which nodes represent random variables and links express statistical rela-

tionships between the variables.

A Bayesian network is a directed acyclic graphical model in which each node X; is associated with the con-
ditional distribution p(X;|pa(X;)), where pa(X;) indicates the parents of X;. The joint distribution of
all nodes in the graph, p(Xi.y), is given by the product of all conditional distributions, i.e. p(Xj.n) =
[T, p(Xilpa(Xy)).

When equipped with causal semantic, namely when describing the process underlying the data gener-
ation, a Bayesian network expresses both causal and statistical relationships among random variables—in

such a case the network is called causal.

ASSESSING STATISTICAL INDEPENDENCE IN BAYESIAN NETWORKS. Given the sets of random vari-
ables X', Y and Z, X and ) are statistically independent given Z if all paths from any element of X" to any

element of ) are closed (or blocked). A path is closed if at least one of the following conditions is satisfied:

(i) There is a non-collider on the path which belongs to the conditioning set Z.

(ii) There is a collider on the path such that neither the collider nor any of its descendants belong to Z.

A.S SCALING UP CAUSAL EXPERIMENTS

The purview of the experiments in the main text was to show a proof of concept on a simple tractable
system, demonstrating that causal induction and inference can be learned and implemented via a meta-

learned agent. In the following, we scale up our results to more complex systems in two new experiments.

A.s.1  EXPERIMENT 4: NON-LINEAR CAUSAL GRAPHS

In this experiment, we generalize some of our results to nonlinear, non-Gaussian causal graphs which are
more typical of real-world causal graphs and to demonstrate that our results hold without loss of generality

on such systems.
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Active-Int. Random-Int. +
Obs. Active-Int. _
Long-Obs. % Optimal C-E

0.0 2.0 0.0 2.0
Avg. Reward Avg. Reward

Figure A.3: Results for non-linear graphs. (a) Comparing average episode reward for agents trained with different data. (b)
Comparing information phase intervention policies.

Here we investigate causal Bayesian networks (CBNs) with a quadratic dependence on the parents by
changing the conditional distribution to p(X;|pa(X;)) = N( NL, > wi(X; —l—)(?), o). Here, although each
node is normally distributed given its parents, the joint distribution is not multivariate Gaussian due to the
non-linearity in how the means are determined. We find that the Long-Observational Agent achieves more
reward than the Observational Agentindicating that the agentisin factlearning the statistical dependencies
between the nodes, within an episode. ~ We also find that the Active-Interventional Agent achieves reward
well above the best agent with access to only observational data (Long-Observational in this case) indicating

an ability to reason from interventions. We also see that the Active-Interventional Agent performs better

than the Random-Interventional Agent, indicating an ability to choose informative interventions.

A.s.2  EXPERIMENT 5: LARGER CAUSAL GRAPHS

(a) (b)

Active-CF

Active-Int. Random-Int.

Active-Cond. Active-Int.

Obs. Ooti ICE|

Long-Obs. ptimal C- |

0.0 1.0
0.0 1.0
Avg. Reward Avg. Reward

Figure A.4: Results for N = 6 graphs. (a) Comparing average episode reward for agents trained with different data. (b)
Comparing information phase intervention policies.

In this experiment we scaled up to larger graphs with N = 6 nodes, which afforded considerably more

unique CBNs than with N = 5 (1.4 x 107 vs 5.9 x 10%). As shown in Figure A.4a, we find the same pat-

"The conditional distribution p(X;.p|X; = 5), and therefore Conditional Agents, were non-trivial to calculate
for the quadratic case, and was thus omitted.
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tern of behavior noted in the main text where the rewards earned are ordered such that Observational agent
< Active-Conditional agent < Active-Interventional agent < Active-Counterfactual agent. We see addi-
tionally in Figure A.4b that the Active-Interventional agent performs significantly better than the baseline

Random-Interventional agent, indicating an ability to choose non-random, informative interventions.
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