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Abstract

In a complex and ever-changing world, how do humans reason as intelligently as they do—especially

given limited energy, data, and time? How can understanding this guide us toward building better artifi-

cially intelligent systems? Bayesian models provide a normative account of rational behavior. Although

computing rational responses via exact Bayesian inference is expensive, empirical findings show that hu-

man behavior is often consistent with these rational responses. This seems to indicate that an efficient and

accurate inference engine underlies human cognition. However, in several notable cases, humans display

‘cognitive biases’, where their judgments deviate systematically from exact Bayesian inference. How canwe

reconcile these contradicting findings? This thesis provides a reconciliation by building on the insight that

humans are not general purpose computers: we are instead ‘ecologically rational’, adapting to structure in

our environments to make the best use of limited computational resources. I first discuss algorithms for

approximating exact Bayesian inference within limited computational resources. These reduce the costs

of inference by leveraging underlying environmental structure through ‘amortization’: the adaptive re-use

of previous computations. However, amortization can lead to errors when the current query is not repre-

sentative of past experience. I demonstrate that these errors replicate several human cognitive biases, and

test new predictions with behavioral experiments. Finally, I show that amortization also gives rise to eco-

logically rational behaviors in machine learning, and demonstrate how this can be leveraged to artificially

engineer new kinds of intelligent behaviors, like causal reasoning and compositional language representa-

tion. This also provides new insights into how these central tenets of intelligence manifest in humans. By

taking an algorithmic approach to ecological rationality—that is, by making explicit claims about how it

can be implemented at the level of computational processes—this thesis develops new models for human

probabilistic inference that can explain both its remarkable successes as well as its seeming failures, and also

suggests new avenues toward machines with human-like intelligence.
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1
Introduction

Understanding the flexibility and efficiency of human intelligence, as well as how to incorporate it in ar-

tificial systems, has been a long-standing open problem. A promising and successful approach has been

to build structured probabilistic models of cognition*. These have been very successful as a theory of

human-like intelligence for two key reasons. First, by being ‘structured’ they allow for primitives of hu-

man symbolic thought – like rules, grammar, and logic – that allow humans to generalize far beyond our

direct experience. 121,62 A classic example is of mathematical knowledge, for example, once we know the

rules of addition, we can add two numbers we may never have added or even seen before. For a more ev-

eryday example, we know that if “Jane is taller than Gloria”, this implies that “Gloria is shorter than Jane”,

since that is a logical deduction – even if we may never have met Jane or Gloria, or know anything about

their actual heights. These abilities require abstract, logical, structured representations. However, such

*In Chapter 2, I discuss in greater detail specifically Bayesian probabilistic models, which are a subset of proba-
bilistic models in general. Structured probabilistic models are also a type of generative model since theymake explicit
claims about how the observed data is generated.
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representations cannot explain another crucial aspect of human intelligence, namely graded, uncertain in-

ferences. 377 In many such cases, people do not have adequate information to make logical deductions, but

canmake reasonable ‘guesses’ and are aware of their own uncertainty. Solely with access to discrete, logical

rules, it would be impossible to account for human beliefs like ‘most birds can fly’, or the human ability

to make sense of and learn from ambiguous signals. This brings us to the second key aspect of structured

probabilistic models – that they operate over probabilities, not Boolean truths. Structured probabilistic

models provide a broad, flexible framework with these key desirable properties, that abstracts away the

core of the problems that intelligent systems need to solve, and provides a normative solution. This per-

mits us to understand human cognition across a wide range of domains 179 frommotor control 251 to social

cognition 11. They have also been adopted and used in artificial intelligence 259,84,490,439.

However, these models face some crucial shortcomings as models of intelligent behavior. While struc-

tured probabilistic models provide a normative answer and a good theory of the abstract problem intelli-

gent systems are trying to solve, they provide no insight into how these systems might actually solve these

problems (i.e. make probabilistic inferences in structured models) at the level of algorithms or psychologi-

cal processes 295. This concern is exacerbated by two key issues. First, making exact probabilistic inferences

in these structured models is largely intractable. The very flexibility of these models, in being able to gen-

eralize far outside direct experience and account for uncertainty, can hinder finding a solution to a specific

given problem. The space of solutions these models can represent is so vast, that finding the right solution

for the problem at hand is like finding a needle in a haystack. I discuss this issue in greater detail in Chapter

3.* Therefore, despite significant advances towards explaining behavior, they largely remain ‘as-if’ models

that describe what intelligent systems might be doing, but do not provide a complete picture of how cog-

nition works. These concerns have also hindered the adoption of these structured probabilistic models,

in mainstreammachine intelligence. Second, much empirical evidence suggests that humans make several

systematic inferential errors, with their probabilistic estimates deviating consistently from the predictions

of exact probabilistic inference. Some of these include effects like base rate neglect 248, where people tend to

*The intractability of exact inference is exactly analogous to the intractability of computing the partition func-
tion in statistical physics. Several approaches developed to address this problem in physics can be generalized to the
problem of approximate probabilistic inference. These are discussed in greater detail in Chapter 3.
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ignore certain sources of information like prior probabilities, or the anchoring effect457 where putatively

unrelated sources of information influence future inferences, among many others. Wikipedia lists over

a hundred such established cognitive biases. The fields of behavioral economics 234 (which was arguably

formed around the documentation and analysis of such biases), as well as cognitive psychology 358,158 have

responded to these findings with the proposal that humans in fact do not perform probabilistic inference

at all, and instead employ heuristic strategies. These heuristic strategies usually sacrifice the guarantee of be-

ing optimal but are often sufficient for achieving immediate goals, and are computationally much cheaper

than computing optimal responses. In keeping with this, the hugely successful deep-learning approach

to machine intelligence is largely based on heuristic pattern-matching 289,261, rather than normative proba-

bilistic inference in structured models.

Heuristic solutions however donot have the explanatory power of structuredprobabilisticmodels: they

also do not generalize well, and tend to be very domain-specific. Can we address the shortcomings of

structured probabilistic models, to allow them to be more complete models of human intelligence?

Considering the environment in human intelligence

This thesis addresses these two key criticisms of structured probabilistic models by providing a) a more

computationally tractable solution to inference and b) an explanation for deviations from exact inference.

This is done by taking a renewed look at the environments in which humans operate. The importance

of the environment in shaping intelligent behavior, and thereby the importance of considering it when

trying to understand intelligence, has been around in psychology as far back as 1943 with the work of

Brunswik 51, and has since been periodically reinstated by the works of Simon418, andGigerenzer 161 among

others. These works posit that a better lens to look at human cognition is not of pure rationality or nor-

mativity, but rather through the lens of ‘ecological rationality’ – where the mindmakes best use of limited

cognitive resources, by leveraging underlying structure in the environment. However, most mainstream

psychology focuses primarily on the internal frameworks, mechanisms, and representations within the hu-

man mind, largely neglecting the structure of the environment and how it might strongly impact these.

In the words of Egon Brunswik, “Psychology has forgotten that it is a science of organism-environment
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relationships, and has become a science of the organism”.

This thesis posits new models of human probabilistic inference that leverage environmental structure

flexibly to ease the computational burden of exact inference in structured probabilistic models. This adap-

tation to the environment ismade possible by considering the role ofmemory as a computational resource,

and re-using previous computations. If there is underlying structure in the distribution of queries posited

by an environment, it can be picked up and used by a system that tries to efficiently re-use the compu-

tations done in response to these queries. This process is called amortization, and is discussed in further

detail in Chapter 4. The resulting computational savings lead to more psychologically realistic demands

of human cognition, thereby rendering approximate probabilistic inferences in structured models less in-

tractable andmore plausible. But there is no free lunch; these computational savings come at a cost. While

theymight ease some inferences, they do so bymaking smart approximations. This canmake certain kinds

of errors more likely. A system that utilizes implicit underlying structure in the distribution of queries will

make mistakes when this structure is violated. I show that the errors made by such models exactly mirror

the patterns of cognitive biases observed (historically as well as in a series of new experiments) in humans.

This program of research therefore jointly addresses both of the key concerns with structured probabilistic

models of human cognition outlined above.

Considering the environment in machine intelligence

While much recent work has demonstrated the advantages of structured probabilistic models in building

better artificial intelligent systems259,84,490,439, the difficulty of inference remains a major impediment in

their wide-spread adoption. Engineering solutions to easing this inference have included the re-use of past

computations i.e. amortization, in the form of a recognition model 82,241 or, in the age of deep-learning,

an inference network255,310,368,341. In fact, even in the absence of any explicit probabilistic generative model,

many machine learning methods that simply do discriminative* classification or ‘pattern matching’, can

be interpreted as amortized inference in an implicit model.

*Discriminative models directly model conditional distributions, i.e. posterior distributions, as opposed to gen-
erative models that model the full data generating process, i.e. the joint distribution. A more detailed discussion of
this distinction is made in Chapter 4 in the section on amortization in machine learning.
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As discussed briefly earlier (and in greater detail in Chapter 4), amortization leads to adaptation to the

environmental distribution of queries. Most modern machine-learning methods implicitly invoke some

form of amortized inference, and are thereby strongly influenced by statistical structure in their training

environments. More explicitly addressing the role of the environment in shaping the inference procedures

learned by these systems can have great value – both for better understanding current systems, as well as

building better ones. However, as in cognitive science and psychology, machine learning methods have

historically largely neglected the role of the system’s learning or training environment. Progress is usually

gauged by how new models and mechanisms perform on unchanging, often arbitrarily selected, standard-

ized data sets. Yet it is often unclear –without a better understanding of these data sets –what exactly good

performance on them reallymeans. Not only is the role of the training environment in shaping learnedpro-

cedures poorly understood, it is as a result also underutilized. We have complete control over the training

environments our artificial systems receive. Engineering these environments – rather than only engineer-

ing the inner mechanisms – is an important and promising approach (with complementary advantages to

the engineering of inner mechanisms) towards building systems that exhibit intelligent behavior.

The second part of this thesis discusses and demonstrates how analysis and manipulation of learning

environments can provide insight into how to artificially develop central tenets of human intelligence like

causal inference and language. These insights also provide new ways to study how humans acquire and

implement these complex behaviors.

Outline

The key insight that I build on in this thesis is that humans are not general purpose computers – and

neither should artificial systems that hope to emulate human intelligence. Humans and and human-like

machines have to work with limited computational power, and have to interact only with specific kinds

of environments. While normative approaches like structured probabilistic models give us deep insights

into the domain-general ‘what andwhy’ of intelligent behavior, it leaves open the crucial question of ‘how’

intelligent behavior can realistically manifest in ecologically relevant domains, within limits on time, data

and energy. I argue that algorithmic realizations of ecological rationality – where intelligent systems make
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the best use of limited resources by leveraging underlying structure in the environment –within the frame-

work of structured probabilistic models, provides a promising way forward. Through a series of investiga-

tions into human and artificial intelligence, I demonstrate how this insight can lead us to better models of

human cognition, as well as better approaches to artificial intelligence.

InChapter 2, I review the literature on human probabilistic inference. I first reviewnormative accounts,

followed by a review of other approaches to human probabilistic inference. I highlight the contributions

and shortcomings of these approaches, and outline how this thesis suggests a more complete picture by

unifying their complementary advantages. In Chapters 3 and 4, I review some technical and conceptual

background. In Chapter 3 I cover technical background on approximate probabilistic inference. Several

of thesemethods have been developed in statistical physics, and I review how they can be generalized to ad-

dress the intractability of Bayesian inference. In Chapter 4 I introduce a formal notion of computational

re-use i.e. amortization and discuss how it can be used within algorithms for approximate inference. I

outline how the process of amortization can leverage underlying environmental structure to give ecologi-

cally rational behavior. Finally, I review how amortization has been an implicit part of several approaches

to machine learning as well as models of human cognition, and discuss the value of addressing it more

explicitly.

InChapters 5 to 7, I discuss how these concepts canbeused tobuild newmodels for humanprobabilistic

inference. Chapter 5 studies human inferences in large hypothesis spaces. This is a challenging problem,

where exact inference is intractable. I demonstrate that a sample-based approximation under ecologically

rational constraints, can replicate the specific kinds of biases observed in human inference in such large

hypothesis spaces. Further, in small hypothesis spaces, this model returns optimal responses. This allows

us to jointly explain both the rationality as well as various kinds of irrationality of human inference within

the same framework. Chapter 6 expands on the role of the environment in sample-based approximations. I

empirically demonstrate, as well as build models for, re-use of computation in consecutive related queries.

This kind of re-use – or amortization – is ecologically rational since queries in the real world are often

related, and the best use of limited resources is to re-use previously completed computations.

Chapter 7 studies the role of re-use and ecological rationality in greater detail. In particular, I dis-
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cuss amortization in a variational framework, which is more amenable to flexible re-use than sampling.

I demonstrate how this framework can replicate several cognitive biases that involve context-sensitive non-

normative reactions to different sources of information, as well as various various other effects. This work

posits an algorithmic approach, via amortizationof inference, tounderstanding ecologically rational heuris-

tic behavior. I also discuss how this approach can be combined with previously discussed sampling ap-

proaches. This unification results in a single model that can jointly account (with few assumptions, and

withmechanistic commitments that are within the realm of the psychologically plausible) for a wide range

of biased inferences – while still retaining the capacity for optimal inference in the limit of infinite experi-

ence in the environment, and/or infinite computational resources.

Chapters 8 and 9 shift gears to focus on the role of the environment in studying and improving mod-

ern artificial intelligence (AI). In Chapter 8, I consider a system for natural language processing, where

ecologically rational heuristic behavior can explain the errors this system makes – analogous to how they

explained human biases in Chapter 7. I outline an approach that uses this insight to better asses as well as

improve these systems. In Chapter 9, I demonstrate how we can leverage the strong influence of the envi-

ronment on the inference procedures learned, to engineer the inference procedures we want. I show that

manipulation of the environment of a very simple learning architecture, can give rise to complex behaviors

including causal inference procedures and active information seeking. The strong control we have over the

environments encountered by artificial systems also allows new investigations into ecological rationality,

and how it shapes human cognitive abilities.
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2
Probabilistic inference in humans

Reasoning in the face of uncertainty is a hallmark of intelligent behavior. In this chapter, we study how

humans make such probabilistic inferences. I will first provide some background on Bayesian models of

cognition; these posit that humans are entirely rational in how they perform probabilistic inference. I will

discuss what they provide and where they fall short. I will then provide an overview of approaches that

have attempted to address these shortcomings by positing boundedly rational behavior. In particular, I

will summarize two major lines of work: the heuristics and biases literature, and the literature on com-

putational rationality. Finally, I will introduce a special case of bounded rational behavior viz. ecological

rationality. This proposes that human probabilistic inference leverages structure in its environment to

shape its inference procedures, and makes best use of bounded rationality.
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2.1 Bayesian models of cognition

Bayesianmodels of cognition follow in the tradition of ‘rational analysis’408,6: an approach to cognitive sci-

ence that frames cognition as an approximately optimal response to the structure and uncertainty present

in natural tasks and environments. This framework specifies the goals of a system and the information

it has access to, and makes predictions about behavior by determining what would be optimal or norma-

tive under these assumptions. A central contribution of such models is that they go beyond describing

phenomena and mechanisms, and attempt to provide insight into why the processes might be as they are.

Since the normative response can be derived from the assumptions, these models make testable predic-

tions about behavior in new situations (that can be empirically generated and manipulated), and thereby

facilitate the scientific process of building, falsifying and improving theories.

Bayesian models posit that humans reason probabilistically, following the tenets of Bayes’ rule. Proba-

bility theory specifies how rational agents should reason in situations of uncertainty 190,160, and is therefore

an important part of rational models of cognition. The motivation for using specifically a Bayesian ap-

proach to probabilistic inference is that they provide an answer – at least in principle – of how humans go

beyond the data collected solely from their own experience of the world, integrate it with abstract prior in-

formation, and make intelligent inductive inferences. Many problems in our everyday life are vastly under-

specified by our sensory input. To take an example fromGriffiths et al. 179 : deducing with certainty the the

color of an object is impossible simply by observing light reflected from it, since the input we receive is a

combination of the light illuminating the scene, and the spectrum reflected by the object. Bayesianmodels

posit that the reason we are nonetheless able tomake intelligent guesses about the colors of objects around

us is that we have strong expectations about the spectrum of light that usually illuminates our surround-

ings. This takes the form of a priori knowledge gained from previous experience, that we can integrate

with the visual signal received – using Bayes’ rule – to make useful guesses about the problem at hand.

While suchmodels have been successfully used tomodel behavior in several domains, two key concerns

remain. First, exactly applying Bayes’ rule is often intractable – particularly in flexible, structured models.

This is an established and extensively studied problem in statistics. 219,9 I discuss the details of this problem

and potential solutions to it in Chapter 3. Second, significant empirical evidence suggests that humans
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responses often deviate significantly from Bayes optimal in systematic and predictable ways.458,427,175,118

Bothof these raise concerns aboutwhether or not humans are actually performing exact Bayesian inference,

and has led to much controversy. 302,153,390

In the next section I discuss some other approaches to modeling human inference that skirt these con-

cerns with exact Bayesian models of cognition. These approaches move away from the rational analysis

perspective and move closer to the psychological mechanisms underlying behavior 184 – but do so in very

different ways.

2.2 Bounded rationality

An important path toward establishing a stronger connection between rational models of cognition and

psychological mechanisms is to recognize that humans are resource limited, and computing exact norma-

tive responses might be outside the scope of the psychological mechanisms available at their disposal. This

idea was formalized in Simon 417 as ‘bounded rationality’: the idea that the rationality – and therefore the

normativity – of individual actors is limited by the information they have, the limitations on their cogni-

tive resources, as well the finite amount of time they have to make decisions (see Russell 386 for a review).

Several different strategies for taking into account the effects of information-processing constraints have

been considered. Here I present two key ones; first, we consider rejecting the principle of rational analysis

in favor of finding simple but effective heuristics; and second, we consider incorporating constraints into

the optimization process.

2.2.1 Heuristics and Biases: shortcuts around normative inference

If the goal is bounded rationality, we need not retain the principle of optimality from rational analysis.

Rather, we can posit heuristic mechanisms by which people arrive at responses, that might be far easier to

compute. Several of thesemight provide reasonably good responsesmost of the time – satisfying the claim

of being ‘boundedly’ rational – however their means of arriving at these responses might be largely discon-

nected to the process of explicitly computing the optimal response (via normative probabilistic inference,

as prescribed by rational analysis).
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Therefore, the argument is that while certain behaviors might look ‘as if’ people are engaging in norma-

tive Bayesian inference, theymight be doing something completely different – viz. a heuristic strategy that

is much easier to implement. In cases where this heuristic contradicts normative Bayesian inference, we get

the systemic and predictable deviations from normativity as recorded in empirical studies. This approach

has been hugely influential in behavioral economics, – pioneered by Kahneman and Tversky457 – as well

as in psychology (see Gigerenzer & Selten 159 for a review).

A crucial shortcoming of these approaches however is that while they answer the ‘what’ of the processes

underlying human inference, by relinquishing the optimization perspective of rational analysis, they often

fail to account for the ‘why’*, and the ‘how’. This can lead to lists of heuristics, conceived with inspiration

from the specific modes of failure noted in human inference, without a unifying theory of why and how

these heuristics are learned or where they come from.

Another problem is that of strategy selection 154,291 – how do we choose a heuristic for a specific context?

Mostmodels of strategy selection assume that people are able to assess the usefulness of a strategy, through

cost-benefit analysis223,18,270, reinforcement learning 101,371, or based on the strategy’s applicability in a par-

ticular domain 292,400 – which in and of itself might be a resource-intensive process outside the scope of

the posited limitations on cognitive resources. Further, all of these approaches require, either explicitly or

implicitly, a feedback signal. This requirement poses a problem in inferential settings where no feedback

is available. People can readily answer questions like “How likely is it that a newly inventedmachine could

transform a rose into a blackbird?” 177 which lack an objective answer even in principle.

Finally, while these heuristics have been studied primarily in the domain of judgment and decisionmak-

ing, probabilistic inference in humans is important for a much wider set of domains – including concept

learning, causal attributions, and language learning. Many of the proposed heuristics are often specific to

the kinds of problems studied in explicit judgment and decision making, very often in the domain of lin-

ear regression across a series of attributes that influence a binary forced choice between two options71,423.

These heuristics might not transfer well to other use cases for probabilistic inference in humans, where the

*Gigerenzer 154 does address a version of the ‘why’ question by characterizing heuristic judgment as an adaptive
response to structure in the environment, by claiming that heuristics are ‘ecologically rational’. I discuss this in greater
detail in the next section.
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structure of the problem can be significantly more complex. In addition, the procedures used to isolate

and understand heuristics so far – by studying deviations from normative inference in these explicit de-

cision making tasks – might not apply to these other more complex domains, since isolating and testing

interpretable deviations from normativity in such complex domains is challenging. A broader, more gen-

eral theory of how heuristic inference arises in humans, as driven by concrete underlying principles, would

allow a more general theory of probabilistic inference in intelligent systems that spans domains.

2.2.2 Computational rationality: optimization under constraints

Another approach is to explicitly account for the costs of computation in the overall optimization, i.e., to

extend the principle of rational analysis to bounded agents. These approaches entail specifying the costs

of information-gathering, cognitive resources, and time, as well as specifying an algorithm for computing

a response that makes specific demands on these resources. By including these resource limitations in the

optimization problem, we arrive at a ‘boundedly rational’ solution.

This problem can be discussed at different levels ranging from a computational-level account that de-

scribes the problem being solved but does not propose a plausible mechanism, to more mechanism driven

accounts. At one end is to simply describe behavior as resource-rational467,400 and posit a new optimiza-

tion problem that accounts explicitly for the costs of internal computations. This approach however,

punts the original problem of intractability one step ahead – the new ‘boundedly rational’ objective func-

tion, which accounts for resources in addition to the original optimization objective, might be even harder

to optimize than the original optimization. While this approach has great explanatory power, it still leaves

open the question of how humans might be achieving this bounded rationality.

Amiddle ground is to build rational process models 180,394,73. These make specific claims about how the

original optimizationproblemmight be approximated, anddemonstrates how limitations on information-

gathering, cognitive resources, and time – during the process of approximation – could lead to deviations

from normativity. Many of these approaches still retain an interpretation as computational or resouce

rationalit: ceasing additional investment of time or cognitive resources is a (conscious or sub-conscious)

choice. This choice is made by computing the marginal utility of additional investment (also often for-
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malized at the value of computation 216), and deciding whether this additional utility is worth the cost of

the investment 135,180. The assumption is that increased investment of computational resources will start

providing smaller and smaller gains to the marginal utility, whereas the cost of resources remains constant.

Therefore, we will reach a certain degree of resource / computational investment, where additional invest-

ment is no longer worth it.

To naively compute marginal utility however, we need to know how much closer we would get to the

normative response with additional investment. If we do not know the normative response, it is not pos-

sible to measure how close we are or will be to it. The question remains therefore of how to decide when

to stop investing computational resources. Certain properties of the cost function (including the cost of

resources) can alleviate this issue. In particular, if the cost function is convex and smooth, then the opti-

mization can be performed using local gradients. In this case it is possible to tractably computewhether we

have arrived at the ‘optimal’ trade-off between proximity to the normative response, and computational

investment (see Section 3.4.2 for details).

In Chapter 5 I introduce a rational process model for probabilistic inference where the cost function

has these properties. However, several other models for resource-rational inference might not fall into

this smooth optimization regime. 216,387,198 While much progress has been made in characterizing several

behaviors as resource-rational, they continue –without further assumptions – to fall into the trap of being

an ‘as-if’ model without a realistic proposal of how boundedly normative behavior could be implemented.

One approach is to learn a predictive model that learns (using past experience) the optimal trade-off

point, based on features of the problem. This constitutes a form of amortization, that leverages memory

and structure in the environment to make this problem more tractable. Learning predictive models for

the optimal stopping point can be extended to a rational solution to the strategy selection problem 270

where the accuracy and cost of each heuristic is learned (or amortized) over experience with reinforcement

learning and chosen between. 101,371 This however, still leaves open questions like where these heuristics

come from in the first place, as well as fails to account for how people form inference strategies in cases

where external feedback is unavailable. In Chapter 7, I introduce a formalism where heuristics can be

learned as well as selected without explicit feedback.
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Further, most rational process models are based on domain-general algorithms, and thus struggle to ex-

plain the context-sensitivity of inferential errors (see Mercier & Sperber 304 for a similar argument). Some

models explainwhy certain kinds of queries induce certain kinds of errors73, but do not explain how errors

can be modulated by other queries in the same context 142,74. As a broader implication of being domain-

general, these approaches suggest potential explanations for biases in human inference by positing limita-

tions on computations – but do not provide explanations for how people (with the same limited compu-

tation) can sometimes perform so close to optimally in certain domains.

2.3 Ecological rationality

The two approaches in the previous sections – of heuristic inference and rational process models – have

some common ground; certain heuristics might be considered accurate approximations 155,343,23. The ap-

proach of understanding heuristic inference as fast and frugal hacks that result in adaptive behaviors has

been furthered significantly by the research program in Gigerenzer & Gaissmaier 157 . This program sug-

gests that heuristics are not simply sub-optimal hacks that serve error-prone human inference, but rather

that they leverage underlying structural information in environments to make smart inferences without

excessive investment. This idea is termed ecological rationality. It traces back to Simon 417 . He used the

famous analogy of a pair of scissors for human inference, where one blade represents the cognitive limi-

tations of humans and the other the structures of the environment. This analogy illustrates how minds

compensate for limited resources by exploiting known structural regularity in the environment. It has

however, largely dropped out of the limelight in psychological research, with the majority of approaches

focusing on internal mechanisms, with relatively little focus on the environment.

A crucial exception to the broader oversight of ecological rationality in psychology is the work of 154.

However, while this literature has extensively studied the ecological rationality of ‘fast and frugal’ heuristics

in real-world decision environments, many of these studies remain tied to specific judgment and decision-

making domains. These cannot be generalized since they do not make explicit claims about underlying

mechanism. For example, it is not immediately obvious how patently decision-centric heuristics like ‘take-

the-best (where the value of two alternatives is decided by the first cue that discriminates between the alter-
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natives, if the cues are arranged by cue validity) apply to say a continuous space of options, or to estimating

the value of a option directly (rather than comparatively), or when the options are not explicitly provided

but have to be constructed. In addition, it remains to be shown how – even in the standard judgment and

decision-making domains – such heuristics are learned and chosen for the specific environment at hand.

On the other hand, the rational process model literature provides more generalizable models that can

apply across domains and tasks, since they are based on underlying mechanism. But they fail to account

for structure in the environment, since by the very virtue of these algorithms being domain-general, there

is no adaptation to specific environments. They are therefore unable to explain differences in performance

– either in how normative people are, or in the specific deviations fromnormativity people exhibit – across

different domains. Certain rational process models that do explicitly take feedback from the environment

within a domain general procedure, fall into the strategy selection trap – where optimally choosing the

‘right’ heuristic remains intractable and outside the scope of realistic psychological mechanisms. In cases

where there is some adaption to environments by learning strategy selection from previous experience (via

amortized planning in a reinforcement learning model, see Chapter 4 for details), this adaptation relies

on external feedback which is not always a reasonable assumption. Further, it continues to require the

pre-specification of the heuristics under consideration.

2.3.1 Algorithmic approaches to ecological rationality

This thesis proposes an approach that combines the complementary advantages of the heuristics and biases

approach with rational process models of inference. I show how the principle of amortization (discussed

in Chapter 4) can be used to facilitate approximate Bayesian inference, and lead to ecologically rational

heuristic behavior in human probability judgment. This can be applied across domains and tasks, since

it specifies underlying mechanisms (similar to a rational process model), but also allows adaptation to the

environment. These models can explain both how humans make good decisions with limited resources

in certain domains (similar to heuristic approaches), as well as the context-sensitivity of inferential errors

(overcoming the strategy selection problem). This paves the way forward to a more comprehensive view

of bounded rationality in human inference. In the following two chapters, I expand on the conceptual
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framework for this approach: first by discussing approximate solutions to exact probabilistic inference,

followed by a discussion of amortized computation.

I also discuss how this approach (of explicitly studying the role of the environment in acquiring domain-

specific amortized inference strategies) can inform the study and engineering of artificially intelligent sys-

tems. I demonstrate how analysis and manipulation of learning environments can provide insight into

how to artificially develop central tenets of intelligence like causal inference and natural language, as well

as inform the underlying mechanisms of how humans acquire and implement these complex behaviors.
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3
Approximating Bayesian inference

This chapter provides a brief introduction to the approximate inferencemethods thatwill be used through-

out this thesis. These form the backbone of most rational process models for human cognition, as well as

of algorithms for machine intelligence in a structured probabilistic models framework. First, I introduce

the computational problemwehope to approximate and explainwhy it is challenging. Second, I introduce

sampling-based approaches, focusing onmethods based onMarkov chains. Third, I introduce variational

approaches to this problem. Finally, I briefly discuss the trade-offs between these two methods, and how

they might be combined.

3.1 The challenge of Bayesian inference

Bayesian inference is a method in statistics where Bayes’ theorem is used to update the probabilities of

hypotheses h ∈ H (whereH specifies the space of possible hypotheses) asmore information or data d ∈ D

(where D represents the space of values observed data can take) is made available. We consider a simple
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coin-flipping example: here we wish to update the probabilities that a coin is biased towards Heads (h1),

is biased towards Tails (h2), or unbiased (h0) based on observing the results of coin flips (d ∈ {H,T}

for heads or tails). Bayesian inference has two key components each together form a statistical model for

the observed data. First, a prior distribution P(h) defined over all hypotheses h ∈ H that determines

the a priori probability of a certain hypothesis. In our coin flipping example, without any data, we are

likely to have a fairly high expectation that a coin is generally unbiased. This gives high prior probability

to h0, and lower prior probabilities to h1 and h2. Second, a likelihood function P(d|h) that defines the

probability of observing different kinds of data given, specific hypotheses. So in our coin-flipping example,

the likelihood is a Bernoulli probability distribution given by P(H|h) = q = 1 − P(T|h) = 1 −

q with different parameters q for the hypotheses h0, h1 and h2. The goal then is to combine these two

pieces of information – a priori knowledge via the prior distribution, as well as information from the data

observed via the likelihood function– to forma posterior probability distributionover the hypotheses. This

is represented as P(h|d) and computed using Bayes’ rule as follows:

P(h|d) = P(d, h)∑
h′ P(d, h′)

=
P(d|h)P(h)∑
h′ P(d|h′)P(h′)

(3.1)

The numerator i.e. the joint distribution over the data and the hypothesis is easy to compute since we

already know the two components – the prior and the likelihood, and these just need to bemultiplied. The

denominator however requires a summation over all the possible hypotheses. This is tractable in our coin-

flipping case since, in the specific and limited way in which we have formalized the problem, the space of

hypotheses is very small (3 possibilities). However, for several problems of practical significance – includ-

ingmany that humans solve everyday – this summation (or integral) is intractable.* For example, consider

a clinician diagnosing a patient. A patient can simultaneously have any of N possible conditions. This

means that the hypothesis space contains 2N hypotheses. Or consider the segmentation problem, faced

*There exist priors and likelihoods such that this integral remains tractable even for large or continuous hypoth-
esis spaces. These are called conjugate families of prior and likelihood. However, many real world data generating
processes cannot be well approximated by distributions from such conjugate families.
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Figure 3.1: Schematic for Monte Carlo approximation.

constantly by the visual system, of assigning each retinotopic location to the surface of an object. If there

are K objects and N locations, the hypothesis space contains KN hypotheses. Such vast hypothesis spaces

render exact computation of Bayes’ rule intractable, because the denominator (the normalizing constant,

sometimes called the partition function or marginal likelihood) requires summation over all possible hy-

potheses. Computing this normalization constant is the key computational challenge inBayesian inference,

and computing exact posterior probabilities of hypotheses. In the following sections, I will introduce the

two main approaches to approximating such posteriors.

3.2 Monte Carlo methods

Sample-based approximations, also known asMonte Carlo approximations 376, take the following form:

P(h|d) ≈ P̂N(h|d) =
1
N

N∑
n=1

I[hn = h] (3.2)

where I[·] = 1 when its argument is true (0 otherwise) and hn is a random hypothesis drawn from some

distributionQn(h). A schematic is in Figure 3.1. WhenQn(h) = P(h|d), this approximation is unbiased,

meaning E[P̂N(h|d)] = P(h|d), and asymptotically exact, meaning limN→∞ P̂N(h|d) = P(h|d). This

approach is also straightforwardly generalized to sets of hypotheses: P̂N(h ∈ H|d) = 1
N
∑N

n=1 I[hn ∈ H],
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whereH ⊂ H.

In general, we cannot directly sample from the posterior, because the normalizing constant P(d) =∑
h P(h, d) requires the evaluation of the joint probabilities of each and every hypothesis and is therefore

intractable when the hypothesis space is large. In fact, sampling from the exact posterior entails solving ex-

actly the problemwhichwewish to approximate. Nonetheless, it is still possible to construct an asymptoti-

cally exact approximation by sampling from aMarkov chainwhose stationary distribution is the posterior;

this method is known asMarkov chain Monte Carlo (henceforth referred to as MCMC). *

3.2.1 Algorithmic details

In this section I describe a specific variant ofMCMC calledMetropolis-Hastings. I will briefly also discuss

another variant, Gibbs sampling, as a specific case of Metropolis-Hastings.

We assume that the joint distribution is known. Therefore, although we cannot evaluate P(h|d) at

any given h since we do not know the normalization factor, we can evaluate relative probabilities between

the probabilities of two hypotheses. We also assume a proposal distribution Q(h). We will discuss the

importance of the choice of this proposal distribution later in the section.

The goal is to generate samples from some probability distribution P(h|d). The output therefore

should be a set of different hypotheses (denoted S) that occur with frequencies determined by P(h|d).

This set S determines our sample based approximation P̂N(h|d). Its size is determined by howmany steps

Nwe run the chain for. The procedure we follow is:

• Start the Markov chain at any random hypothesis h. Add it to S.

• Propose a new hypothesis h′ by samplingQ.

• Calculate the Metropolis-Hastings acceptance probability a = min
(
P(h′|d)Q(h))
P(h|d)Q(h′) , 1

)
• Flip a coin that lands Heads with probability a.

*There exist other Monte Carlo methods that do not simulate a Markov chain. These include accept-reject
methods and importance sampling. While these have the advantage of producing uncorrelated (i.i.d, independent
and identically distributed) samples, they do not scale well to high dimensions, and often require pre-existing knowl-
edge of the posterior. This makes MCMC methods the predominant Monte-Carlo method used for Bayesian infer-
ence. 319,9
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• If the coin landsHeads then accept the proposal h′ and add it to S. Else reject the proposal and stay
at h and add it to S again.

• Repeat steps 2 onwardN times.

This results in a Markov chain with P(h|d) as its stationary distribution, see Blitzstein & Hwang 37 for

proofs. AsN→∞, the approximation P̂N(h|d) asymptotically approaches the true posteriorP(h|d). See

Holden 1998 214 for proofs.

What remains to be decided is what a good proposal distribution might be. As along as the proposal

distribution ensures a finite probability of proposing every state at some point along the chain (ensures

ergodicity), the samples will converge asympotically to the true posterior. However, the closer the proposal

to the true posterior, the faster the algorithm converges on average.214 The proposal distribution can also

depend on the current state of theMarkov chain, allowing for local adjustments to the current hypothesis.

This often leads to good acceptance probabilities since the posteriors are often smooth – meaning if a

hypothesis has high probability, so will hypotheses that are ‘close’ to it. Another well known variant of

MCMC called Gibbs sampling can be seen as a variant of Metropolis-Hastings, with a specific proposal

distribution such that the proposals are always accepted. Here the sampling is over a joint distribution over

hypotheses h⃗ that have multiple (k) dimensions. The hypothesis along only one of these dimensions hi is

changed in every step, and the proposal distribution is the exact conditional distributionQ = P(hi|h1:K\i).

Substituting this into the formula for the acceptance probability, we can see that this proposal is always

accepted. The conditional distributions however are not always easy to compute, making Metropolis-

Hastings a more general purpose MCMC algorithms (though with the added worry of choosing a good

proposal distribution).

3.2.2 History

Samplingmethods based onMarkov chainswere first developed in physics to study properties of the Boltz-

mann distribution in statistical mechanics. 305 For a system at equilibrium, the relative frequency of a con-

figurationω is given by its Boltzmann weight
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e−E(ω)/kT (3.3)

where T is the temperature and k is the Boltzmann’s constant, and E(ω) is the energy of the configura-

tionω. The probability distribution over configurations therefore is given by

P(ω) =
e−E(ω)/kT

Z
=

e−E(ω)/kT∑
ω′ e−E(ω′)/kT (3.4)

where the denominator Z is called the partition function. This partition function in realistic cases is

computationally intractable. This has striking resemblances to the problem of Bayesian inference we de-

scribed above – where relative probabilities are easy to compute, but exact probabilities are prohibitive

due to the evaluation of an intractable normlizing constant. Some modern MCMC methods like Hamil-

tonianMonte Carlo 319 explicitly form aHamiltonian, assigning energies to different states, and formulate

the probability distribution as a Boltzmann distribution over these states.

The original paper Metropolis et al. 305 introduced theMetropolis algorithm, where the proposal is lim-

ited tobeing symmetric and local. Itwas further generalized, and formalizedmathematically inHastings 196

to give the modernMetropolis-Hasting algorithm described in the previous section.

Versions of MCMC were then applied to optimization problems in the form of simulated anneal-

ing 243, widening their reach outside of statistical physics. The first Bayesian perspective (as well as a new

MCMCalgorithm,Gibbs sampling) came froman application ofMCMCto the problemof digital restora-

tion 132. These methods have since been widely applied in physics, engineering, and artificial intelligence,

see Richey 370 for further details on the history of MCMC.

3.2.3 Monte Carlo methods in models of cognition

Sampling theories have long been invoked, implicitly or explicitly, in models of human cognition to jus-

tify variation in responses across individuals and trials. In studies demonstrating optimal Bayesian be-
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havior in the average, it has often been found that individual reponses arise from the full range of the

distribution, with frequency proportional to the posterior probability, in a phenomena called ‘probabil-

ity matching’483,86,316,467. More recently,‘rational process models’ have explicitly modelled sampling as a

mechanism to drive a stronger connection between rational models of cognition and psychological mecha-

nisms 184,467,410,394,273,327, see Sanborn&Chater 391 for a review. These highlight phenomena that emerge in

the finite sample regime, within a ‘resource-rational’, or computational rationality framework467,180,144,400:

this framework posits that if generating samples is costly (in terms of time and cognitive resources), then

the rational strategy is to generate the minimum number of samples necessary to achieve a desired level

of accuracy. Such a formalism explicitly bridges the requirements from a computational level account of

inference, with the cognitive processes that implement it. *

We have so far discussed the advent of Monte Carlo approximations in cognitive science more broadly,

without considering specific algorithms for it. The twomain contenders havebeen importance sampling410

and MCMC 273. In this thesis we discuss MCMC in particular for a few reasons. First, MCMC does not

require knowledge of normalized probabilities at any stage and relies solely on an ability to compare the

relative probabilities of two hypotheses. It has been shown in the literature436 that humans have a bet-

ter sense for relative rather than absolute probabilities. Second, MCMC allows for feedback between the

generation and evaluation processes. The evaluated probability of already generated samples influences if

and howmany new samples will be generated, consistent with adaptive generation of samples like inHam-

rick et al. 194 . Third, Markov chains generate autocorrelated samples, consistent with autocorrelation in

hypothesis generation 147,469,38. Correlation between consecutive samples manifested as anchoring effects

(where judgments are biased by the initial hypothesis457) are replicated byMCMCapproximations that are

also transiently biased (during the‘burn-in’ period) by their initial hypothesis, prior to reaching the station-

ary distribution 273. Finally, work in theoretical neuroscience has shown howMCMC algorithms could be

realized in generic cortical circuits 53,348,316,27. In Chapter 5 we discuss in greater detail the unique predic-

tions of MCMC as compared to other sampling algorithms that have been explored in the psychological

*As discussed in Chapter 2, a problem that still impacts these sampling algorithms is of how to know howmuch
to sample. I present a possible solution to optimal stopping (without unrealistic demands on cognitive resources) in
Section 3.4.2.
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Figure 3.2: Schematic for Variational approximation.

literature, like importance sampling.

3.3 Variational methods

To motivate variational approximations, we first consider a more general case of Monte Carlo approxima-

tion, using weighted samples

P(h|d) ≈
N∑

n=1
wnI[hn = h], (3.5)

Monte Carlo algorithms can be thought of as procedures for generating an approximate posteriorQφ(h|d)

parametrized by the set of these weights and samples, φ = {wn, hn}Nn=1. In MCMC, these weights are

always one, but methods like importance sampling posit non-unit weights. The supersetΦ of all feasible

sets (i.e., the sets that can be produced by a particularMonte Carlo algorithm) is defined as the approxima-

tion family of this algorithm. This allows us to formalize a more general view of approximate inference as

an optimization problem: find the approximation (parametrized by φ ∈ Φ) that gets ‘closest’ to the true
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posterior, where dissimilarity between the two distributions is measured by a divergence functionalD.

φ∗ = argmin
φ∈Φ

D[Qφ(h|d)||P(h|d)], (3.6)

Monte Carlo algorithms do not solve this optimization problem, but instead randomly sample φ such

that, in the limit N → ∞, they produce φ∗. It is however possible to design non-randomized algorithms

that directly optimize φ even in a sample-based approximation 389 and in fact form the basis for optimal

stopping in sampling-based rational process models discussed in Section 3.4.2. Such optimization is an

example of Variational Inference 228.

The general idea of Variational Inference (VI) is to first posit a family of densities and then to find a

member of that family which is closest to the target probability distribution. Classic variational methods

use the Kullback-Leibler divergence (also known as relative entropy) as a measure of closeness. This is

given by:

DKL[Qφ(h|d)||P(h|d)] =
∑
h

Qφ(h|d) log
Qφ(h|d)
P(h|d)

. (3.7)

This formulation reduces the problem of approximate inference to an optimization problem towhich any

standard algorithm for optimization may be applied. An example with a Gaussian approximation family

and an iterative optimization procedure is given in Figure 3.2.

In general however, this divergence cannot directly be optimized, since finding aQ that optimizesDKL

requires knowing the exact P. We of course cannot already know the exact P, since it is precisely the dis-

tribution we are trying to approximate. Instead we optimize an alternative objective that is equivalent to

DKL up to an added constant. This is called the evidence lower bound (ELBO) and is given as follows:
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ELBO[Qφ(h|d)] =
∑
h

Qφ(h|d) log
P(h, d)
Qφ(h|d)

=
∑
h

Qφ(h|d) log
P(h|d)
Qφ(h|d)

+
∑
h

Qφ(h|d) logP(d)

= −DKL[Qφ(h|d)||P(h|d)] + logP(d) (3.8)

This function is also known as the negative variational free energy. The term ELBO comes from the

fact that L[Qφ(h|d)] is a lower bound on the ‘evidence’ (log marginal likelihood) logP(d), since a KL

divergence between any twodistributions is restricted tobe greater thanor equal to zero. Since the evidence

in a specific situation is fixed, maximizing the ELBO will produce the same variational approximation as

minimizing the KL divergence. Critically, the ELBO eliminates the dependence onP(h|d), only requiring

access to the unnormalized posterior, the joint distribution P(h, d).

3.3.1 Algorithmic details

Algorithms for variational inference vary on two dimensions. First, the specific variational family we use

can vary, and how good of a fit it is to the aspects of true posterior that wewish to capture. UnlikeMCMC,

variational inference does not have any formal guarantees about asympotically reaching the true posterior

– for example, if the variational family chosen does not actually contain the true posterior, the variational

approximation never converge to the exact distribution. Different choices of the approximation family

can give vastly different approximations. Second, the optimization algorithm used can vary. This also

interacts with the choice of variational family – with the goal of allowing maximum complexity in the

variational family while managing the complexity of performing the optimization effectively. Note that

exactly computing the ELBO (Equation 3.8) still requires an expectation overQφ whichmay not always be

tractable, andmay need to be approximated. Thismakes optimizing even the ELBO a non-trivial problem.

In this section we concentrate on one approach to variational inference. We use deep neural networks

as flexible function approximators 82,241,310,368,341, and optimize the parameters of these networks (as the

variational parameters). This allows us to leverage the developments made in gradient based optimzation
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of such architectures. The idea is that the network takes in the relevant information about the data d that

we want to condition on and produces some output. These outputs can be interpreted as the traditional

notion of ‘parameters’ of a variational family φ – for example if wewere considering aGaussian variational

family then the outputs could be themean and variance. However, these ‘parameters’ are produced by the

parameters of the neural network, andwe can directly optimize these network parameters instead, utilizing

much of the progress made in recent years in efficiently and scalably training neural networks. Another

advantage of this approach is the ease of amortization, which is discussed in further detail in Chapter 7.

Even given the ease of gradient-based optimization of neural network architectures (using the backprop-

agation algorithm), we still need to first find the gradient of the cost function (the ELBO) with respect to

our variational parameters. We describe an approximate technique for optimizing the ELBO known as

blackbox variational inference 360 where we directly approximate the gradient of the ELBO with respect

to our variational parameters. This still requires the computation of an expectation over Qφ, which is

tractably approximated with a set ofM samples:

∇φELBO[Qφ(h|d)] ≈
1
M

M∑
m=1
∇φ logQφ(hm|d)

[
logP(hm, d)− logQφ(hm)

]
, (3.9)

wherehm ∼ Qφ(h|d). Using this approximation, the variational parameters canbeoptimizedwith stochas-

tic gradient descent updates of the form:

φt+1 ← φt + ρt∇φELBO[Qφ(h|d)], (3.10)

where t indexes iterations and ρt is an iteration-dependent step-size. Provided ρt satisfies the Robbins-

Monro stochastic approximation conditions (
∑∞

t=1 ρt = ∞,
∑∞

t=1 ρ2t < ∞), this optimization proce-

dure will converge to the optimal parameters with probability 1.

3.3.2 History

The history of variational inference is more difficult to trace since it is a broader concept intimately tied to

the history of optimization. Some of the first variational approximations, recognizable as such, appear in
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statistical physics as mean field theories. The first of these was the Curie-Weiss theory for ferromagnetism,

that made a mean-field approximation to the Ising model70,478. Here, the local field at each point on a

lattice is approximated by a global field that applies uniformly to the whole lattice. This effectively ignores

correlations between the lattice sites. In the language of probability distributions this constitutes approxi-

mating the probability distribution P(⃗h|d) defined over a potentially complex joint distribution over the

K dimensions of h⃗ (the magnetizations at different lattice sites for example), with a factorized distribution

Qφ where

Q(⃗h|d) =
K∏
i
Qφi(hi|d) (3.11)

Theparametersφ1:K defining theparameters of the variational family are thenoptimized. Here, the correla-

tions between the different dimensions are neglected. Subsequent to this model, several other mean field

theories were developed across other domains of physics. Following these, Landau 262 formalized mean

field theory as a variational approximation 230. Concurrently, variational approaches were also applied to

problems in quantum physics and quantum field theory 307,115.

Variational approaches are also used in statistical physics in the context of the partition function prob-

lem discussed in the section on sampling 240,28. While Markov chain Monte Carlo can simulate samples

from unnormalized Boltzmann distributions (Equation 3.4), and thereby provide normalized probabili-

ties, samplingmethods cannot provide an actual value for the normalization constant or partition function

Z. The negative logarithm of this partition function is the free energy. By the principle of minimizing en-

ergy, equilibrium states in physical systems will minimize this free energy. The logarithm of this partition

function is also the log marginal likelihood of the data, or the ‘evidence’ in the language of probabilistic

inference. We can use variational inference to to approximately minimize this free energy, by instead max-

imizing the ELBO (the lower bound to the evidence).

The development of variational methods specifically for Bayesian inference arguably started with a

mean field learning algorithm for neural networks inAnderson&Peterson 7 , followed by formalization of

variational approximations to a slew of other models 397,218. These approaches have been extensively stud-

ied in statistics and machine learning, and provide a strong alternative to MCMC for scalable posterior
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approximation 35,228.

Variational methods have been evoked in models of human cognition both implicitly and explicitly.

Certainmodels of human perception 265 and associative learning 136 make implicit assumptions about what

moments of a distribution humans track – in some cases these can be interpreted as a variational approxi-

mation with a Gaussian family. Studies of cognition that invoke the Free Energy Principle via the notion

of active inference 125 explicitly claim a variational framework. This approach to approximate inference

has also been studied from a neuroscience perspective, where its appeal lies in allowing us to contemplate

complex, biologically realistic approximation architectures (provided that the optimizationprocedures can

also be realized biologically; see Whittington & Bogacz 481). For example, particular implementations of

variational inference have been used to model hierarchical predictive coding in the brain 124,139.

3.4 Hybrid methods

Samplingmethods likeMCMCand variationalmethods usually trade-off in expense vs precision. MCMC

can be very slow to converge, in particular when the parameters being inferred are high dimensional. Each

sampling step can be expensive if we are conditioning on a very large data-set. However, they come with

an asymptotic guarantee – if the algorithm is run for long enough, the approximation converges to the

true posterior. On the other hand, variational methods are much cheaper. Optimization is fairly well

understood problem with many advances in improving convergence speed. With stochastic approaches

to this optimization problem, each step of the optimization can also be made very easy. We also reserve

a lot of flexibility in how good of an approximation we want by choosing how expressive our variational

family is. However, the convergence of this optimization does not guarantee that we have reached the

true posterior. Several recent methods in the machine literature combine the complementary advantages

of these approximation method leading to several new algorithms 269,318,382. These two approaches also

have different characteristics when considering amortization or re-use of inference, we discuss this briefly

in Chapter 4.

Prevailing ideas about approximate inference in cognitive science are largely grounded in a hypothesis

samplingMonte Carlo framework (see Sanborn&Chater 391 for a review), with small numbers of samples.
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In this thesis, I introduce a variational approach in Chapter 7 and how it can expand the scope of ratio-

nal process models by providing a framework for the flexible re-use of computation. Below, I discuss a

few concrete possibilities for how sampling and variational approaches might be combined to build new,

testable models of human probabilistic inference.

3.4.1 Proposal distribution

Almost allMonteCarlomethods rely on a proxy distribution for generating samples. Markov chainMonte

Carlo methods construct aMarkov chain whose stationary distribution is the true posterior, oftenmaking

use of a proposal distribution to generate samples that are accepted or rejected. Importance sampling

methods simultaneously draw a set of samples from a proposal distribution and reweight them. Particle

filtering methods apply the same idea to the case where data are observed sequentially. One natural way

to combine variational inference with these methods is to use the variational approximation as a proposal

distribution. This idea has been developed in the machine learning literature e.g. in De Freitas et al. 83 , Gu

et al. 188 , but has not been applied to human judgment.

For Markov chain Monte Carlo methods, another possibility would be for the variational approxima-

tion to supply the initialization of the chain. If enough samples are generated, the initialization should

not matter, but a number of cognitive phenomena are consistent with the idea that only a small number

of samples are generated468, thereby producing sensitivity to the initialization. For example, probability

judgments are influenced by different ways of unpacking the sub-hypotheses of a disjunctive query73 or

providing incidental information that serves as an ‘anchor’ 275,276. In these studies, the anchor is usually pro-

vided as an explicit prompt in the experiment – variational approximations could provide such an anchor

for a new query in the absence of an explicit prompt.

The quality of the proposal distribution as well as the sampled initialization (in terms of its proxim-

ity to the true posterior) determines the speed of convergence of a sampling algorithm 214. We will see in

Chapter 5 how an un-converged sampling approximation can explain several cognitive biases. Variational

inference provides amechanism for learning a goodproposal distribution or initialization over time. Using

this within a sampling framework could explain why people show different degrees of biases in different
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domains, despite similarity in cognitive resources, i.e. a similar number of samples.

3.4.2 Optimal stopping

The computational rationality perspective on sampling argues that the number of samples is chosen adap-

tively to balance the benefits of takingmore samples against their costs in time and energy 144,467,180. To find

the optimal stopping point, we need to compute the value of additional samples, and decide whether it

outweighs the cost of taking these additional samples. A naive approach to finding the value of additional

samples is to examine how much closer this gets us to the true posterior distribution. This however is cir-

cular, since the true posterior is what we are trying to approximate in the first place. Sowe cannot compare

our current approximation against it. I discussed this problem in Chapter 2 in Section 2.2, when consider-

ing concerns with current models of resource-rationality or computational rationality – that knowing the

optimal stopping point, in the most naive sense, can be more expensive that the original computation we

set out to approximate.

There are however ways to get around this for certain classes of rational-process models, including the

sampling mechanism proposed in this thesis in Chapters 5 and 6. To understand this, we first formalize

the boundedly rational cost function. If the approximate posterior is given by

P(h|d) ≈ P̂N(h|d) =
1
N

N∑
n=1

I[hn = h], (3.12)

Then the bounded rationality objective function is a function of the distanceD between this approxi-

mation and the true posterior, as well as the cost of the resources required tomake this approximation. We

assume that cost scales linearly with the number of samples, with C per sample. This gives the following

objectiveF that we wish to minimize as a function of the number of samples (N):

F(N) = D[P̂N(h|d)||P(h|d)] + CN (3.13)
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We choose the Kullback-Liebler (KL) divergence, or relative entropy, as the distance metric to get

F(N) = DKL[P̂N(h|d)||P(h|d)] + CN (3.14)

=
∑
h

P̂N(h|d) log
P̂N(h|d)
P(h|d)

+ CN (3.15)

Exactly computing this objective still requires the exact posterior to evaluate exactly. However, two insights

make this tractable. First, we note that the KL divergence can we written as follows (see also Equation 3.8):

DKL[P̂N(h|d)||P(h|d)] =
∑
h

P̂N(h|d) log
P̂N(h|d)
P(h, d)

+ logP(d) (3.16)

Here, the first term is computable since a) we know the joint distribution P(h, d), and b) we can take

expectations over our approximate distribution P̂N(h|d). The second term (the evidence or negative free

energy) remains intractable.

However, our second insight is that we do not need to compute the exact value of the objective func-

tion. Our objective function is a linear sum of smooth monotonic functions: the KL term decreases (on

average) with increase in the number of samples, and the cost term increases. Therefore, our cost function

is convex, and the globalminimum can be found simply by following local gradients. This smooth, convex

assumption does not hold for many other classes of resource-rational approximations, for example, if we

are optimizing over the space of discrete strategies (eg. whether to employ a certain heuristic or another),

rather than optimizing over an (almost) continuous parameter like the number of samples drawn. This

local gradient (or the incremental value to one additional sample) is given by:

F(N+ 1)−F(N) =
∑
h

P̂N+1(h|d) log
P̂N+1(h|d)
P(h|d)

−
∑
h

P̂N(h|d) log
P̂N(h|d)
P(h|d)

+ C (3.17)

Since the second term in Equation 3.16 is the same in both, it cancels out, leaving a tractable expression for

the gradient. The gradient can therefore be estimated locally everytime a new sample is drawn. Once this

gradient starts to become negative, it is time to stop computations. This can be seen as treating the sample

based approximation as a variational family and finding the optimal number of samples 388, pointing to
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another important way in which sampling methods and variational methods can be combined to give

more complete models of human probabilistic inference.
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4
Amortization: Memory as a computational

resource

In this chapter, I introduce the concept of amortization. The word refers more generally to the concept

of spreading costs, usually over a period of time. In our case, these are computational costs that can be

amortized by re-using parts of previously computed solutions. Therefore, simply by remembering past

solutions to problems, and flexibly re-using them in the face of new problems, we can use memory as a

computational resource to ease the burden of real-time computation to solve new problems.

In this chapter, I will first discuss how amortization can resolve the intractability of Bayesian inference,

bringing it within the realm of the psychologically plausible. I then discuss how it can explain differences

in context- and domain-sensitivity in inferential errors – both in terms of how likely errors are in the first

place, as well as in terms of the specific kinds of errors observed – by implementing ecologically rational

heuristic behavior. I will then move on to outlining how amortization might be realized algorithmically
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within the models for approximate inference discussed in Chapter 3, as well as in the machine learning

methods that form the base for Chapters 8 and 9. Finally, I discuss how amortization has been implicit in

several models of human cognition (both within and beyond models for human probabilistic inference)

and discuss the value of the approach I take in this thesis, of addressing amortization more explicitly.

4.1 Two kinds of knowledge

There are two distinct aspects to making an inference. The first is to have the relevant information from

the external world that will best inform that inference. In the context of the domains this thesis concerns,

this means having a good (structured, probabilistic) generative model for how that aspect of the world

works, either from previous experience, or through instruction, or in the case of artificial systems by ex-

plicitly encoding this information. Once a system has this information, it is in theory possible to make

normative inferences within this model. But these normative inferences remain to be computed. The sec-

ond aspect therefore is to actually perform the computations that result in an inference: compiling abstract

understanding of the world (in the form of a model) to an actual response. We refer to the first kind of

information as ‘potential knowledge’, since all optimal inferences are in theory possible to compute once

this information is available. We refer to the results obtained by actually computing inferences in such a

model as ‘realized knowledge’.

We give an example for intuition. Once we learn the rules of mathematics, the proofs of all the theo-

rems in the world are included in potential knowledge. However, only a small subset of these proofs can

and will actually be computed by anyone who knows the rules of mathematics. This subset is realized

knowledge. Arriving at each of these proofs requires some work. Even if we already know the rules of a

domain (suggesting that all potential knowledge is within reach), going from that to realized knowledge

can require prohibitive amounts of computation. These computations cost resources. It is these costs that

we wish to amortize.

In this thesis, we are concerned primarily with the computations involved in going from potential to

realized knowledge. All of the experiments andmodels in this thesis concerning human cognition assume

that people have already acquired potential knowledge, and we discuss how the costs of going from this
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to realized knowledge (i.e. actually making inferences in a provided probabilistic model) might be amor-

tized. In our discussions of artificial intelligence, the line between realized and potential knowledge ismore

blurred. We discuss this later in this chapter, as well as include a broader discussion of these two kinds of

knowledge in the Conclusion (Chapter 10).

4.2 Amortization and ecological rationality

We assume for now that we already have potential knowledge, and the challenge is in performing the com-

putations that go from this potential knowledge to an (approximately) optimal response to a query. If

there is structure in the space of queries observed – such that similar queries appear often, or certain parts

of the hypothesis space are never queried – then it is wasteful to not leverage this structure and instead

simply recompute responses to each query independently every time it is encountered. The goal then is to

know when and how to re-use parts of previously computed responses. This amounts to amortizing the

costs of computing a response to a query over many previously encountered ‘similar’ queries, and thereby

using memory as a means for easing the burden of computation.

Amortizing the costs of computation is ‘rational’ only if there exists structure in the environment such

that we expect some similarity in queries encountered. This is guaranteed in any domain with finite hy-

potheses and infinite experienced queries, but will be more prevalent in certain domains than others. In

different environments, with different distributions of queries, different levels of amortization can be op-

timal. For example, if a query is rarely experienced, there may not exist adequate previous experience to

re-use. Further, the cost of storing and recovering previous solutions might not be worth the computa-

tional savings incurred from amortization – especially if the possibility of it being encountered again is

rare. However, when we have a large amount of experience in an environment, and there does exist some

additional structure in the space of queries, it becomesmore rational to amortize computations. These are

the domains we focus on , and argue that the re-use of computations in such structured environments can

lead to ecological rational behavior – i.e. behavior that adapts to and exploits such structural regularities

in an environment.

We expandon the technical aspects of this adaptation, and formalize itmorebroadly and in greater detail
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(a) True posterior, overlaid with query distribution (b) Amortized values for queries

Figure 4.1: Schematic demonstration of amortizing past queries. (A) The true posterior probability (indicated by colors
on the heatmap), as a function of the prior and likelihood for a generative model in which h ∼ Bernoulli(p0) and d|h ∼
Bernoulli(pl). The contour lines depict the query distribution. (B) Amortized estimates based on previously encountered
queries (indicated by colors on the heatmap) are possible and reliable only in the space of frequently encountered queries (as
depicted by contour lines).

in Chapter 7, but Figure 4.1 provides some intuition for how environment sensitivity arises when amortiz-

ing computations. First, we see that good amortized estimates are only possible for frequent queries. In

Figure 4.1(b), we see that the queries forwhich the amortized approximation is close to the true probability

distribution are those that have been previously encountered (the frequency of queries is depicted by con-

tour lines). This could explain context-sensitivity in why people are so close to optimal for certain queries

in certain domains, but exhibit inferential errors in others – despite similar run-time computational re-

sources in both. Second, we see that there might be underlying, lower dimensional structure in the space

of frequently observed queries. These could allow effective heuristic strategies. In the example shown, we

see that the variance in the prior probability in the space of observed queries (the contour lines) is much

lower than the variance in the likelihood. Within the distribution of these observed queries, a heuristic

that only attends to the likelihood would perform reasonably well. In Figure 4.1(b), we see that the heuris-

tic ‘high likelihood implies high posterior’ (and similarly for low likelihoods) roughly holds. This same

heuristic however does not perform well in general in this domain, and would fail on queries that come

from outside the depicted query distribution. This explains the emergence of context-sensitive, ecologi-

cally rational heuristic inference.
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This mechanism for the emergence of ecological rationality addresses some of the concerns raised in

Chapter 2 about how ecologically rational behavior might come about. To briefly re-iterate the concern,

while heuristic behavior in humans has been characterized as ecologically rational 154, models that posit

such heuristics largely remain ‘as-if’ models. They show that human behavior looks as though we are

implementing ecological rational shortcuts, but it remains to be understood how these heuristics arise, and

further, howone chooses the right heuristic for the right environment–with the computations required to

make this choice often being comparably expensive to computing the optimal response from scratch 198,216.

The mechanism of simply reusing inferences made in response to previously encountered queries in an

environment (and thereby amortizing the computations that go into computing these responses) suggests

a feasible way to implement ecological rational behavior. We will also show how implicitly amortized

inferences in algorithms for machine intelligence exhibit ecological rationality, and how an analysis of the

query distributions these systems encounter can provide insight into, and control over, their underlying

functioning.

4.3 Forms of amortization

Amortization can take many forms, and leverage many different kinds of memory. The most general ap-

proach is to think of the computations amortized over previous experience as providing a sort of ‘response-

prior’ for new queries. Note that this is distinct from the prior over hypotheses in the domain we are car-

rying out inference. That is included in ‘potential knowledge’ and we assume it has already been learned.

The response-prior is information gained from previous computations – when going from potential to

realized knowledge in past queries. Crucially, we already possess the knowledge to make an optimal in-

ference from scratch, the response-prior simply provides heuristic, unstructured information that makes

arriving at a good inference – i.e. going from potential to realized knowledge – computationally cheaper.

The response-prior can take many forms. For example, it could inform the type of optimal response (e.g.

it is usually one or twowords long), the rough location of the optimal response (e.g. it’s usually between 10

and 40), heuristic strategies for arriving at good responses (e.g. the best option is often the secondmost ex-

pensive one), or similarity functions to previous episodes (e.g. do exactly what I did last time I was playing
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a similar game, because that worked).

I briefly discuss how amortization is possible in the various algorithms for approximate inference dis-

cussed in Chapter 3. These will be discussed in greater detail in Chapters 6 and 7. I also briefly discuss how

discriminative methods in modern artificial intelligence that rely largely on pattern-matching, can be seen

as a form of amortized inference.

4.3.1 Amortization in a sampling framework

In a Monte Carlo framework, what can be re-used query to query are the samples themselves – or certain

summary statistics of the samples. Consider an example where we have samples from the space of hypothe-

ses h ∈ H, sampled from the posterior distribution P(h|d), giving an approximate distribution P̂(h|d) .

Supposed we generated these samples in response to a query that demanded the posterior probability of

a specific hypothesis h1. The approximate responses in this case would be P̂(h1|d). Now, suppose we are

asked another query about the posterior probability of a different hypothesis h2. If we store these samples

and re-use them for this new query, we do not have to do any new computations – the sample-based ap-

proximate distribution P̂(h|d) can be used to respond to this new query without any additional samples

drawn. However, storing all the samplesmight be very intensive onmemory. One possibility is that people

instead store certain statistics of the samples instead. This reduces howmuch flexibility we have for re-use,

but it reduces load on memory. We propose more specific algorithms for amortization in a sample-based

approximations, as well as test them in humans in Chapter 6.

A disadvantage of purely sample-based re-use is that it is less flexible when two queries are not querying

the same posterior distribution. The framework described so far provides no way to re-use samples from

P(h|d) in P(h|d′), even if d and d′ are very ‘similar’. We will see in Chapter 6 however, that humans re-

use inferences flexibly across different posterior distributions as well, for example when d and d′ are not

the same, but similar is specific ways. I demonstrate how this can be modeled with re-use in a variational

framework in Chapter 7, where such flexible re-use is more feasible. The next section discusses re-use in a

variational framework in greater detail.
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Figure 4.2: Schematic for Amortized Variational approximation.

4.3.2 Amortization in a variational framework

In a variational framework, the approximate posterior P̂(h|d) is a member of some parametrized family

that we choose. These parameters therefore can be re-used from query to query. A key advantage of repre-

senting the approximate posterior as a finite set of variational parameters (rather than a variable number of

random samples, as in sampling framework) is that it makes it easier to flexibly re-use inferences. I outline

below how this might be possible.

In Figure 3.2, we introduced a schematic for variational approximation. To better understand flexible

re-use in this framework, we consider a variant of this schematic in Figure 4.2. This figure highlights that

variational approximation determines a mapping from inputs (priors, likelihoods and data) to the output

(a posterior approximation). One path to go from the input to the output is to explicitly solve the varia-

tional problem. Over extensive experience in a domain, we will have solved this variational problem for a

variety of inputs. Therefore, we can build up a large number of such input-output pairs in memory. We

are then in a position to see if there are any patterns in this mapping from input to output, that we can

use to best inform future computations. This can be done by simply learning a regression function, from

previous input-output pairs, that maps a query (data, prior, likelihood) to an output.* This gives us a sec-

*The inductive biases we usewhen learning this regression functionwill influence the outputs predicted for new
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ond path to go from the inputs to outputs. When faced with a brand new query – that could be different

from others faced before – this mapping allows us to immediately have a guess for the approximate pos-

terior, by simply passing the parameters of this new query through our learned regression function. This

initial guess can be improved using the standard optimization procedure of variational inference, but will

usually require fewer steps of optimization (and fewer computational resources) if our initial guess is well-

informed (the learnedmapping captures the right structure). In this way, we can use information gathered

from previously computed response to amortize the cost of finding variational approximations for new in-

puts. In Chapter 7, we show that many errors and biases observed in human probabilistic judgment are

explained by this mechanism.

Variational approximations still have the disadvantage that they have no asymptotic guarantees, unlike

samplingmethods. Apromisingway forward is to combine their complementary advantages. MostMonte

Carlo approximations rely on having a good ‘proposal distribution’ that closely approximates the true pos-

terior, in order to converge quickly and provide good approximate posterior probabilities under realistic

limitations on the number of samples. We expect humans to be in this low sample regime when using

Monte Carlo methods, due to the limitations imposed by their cognitive limitations. Variational approxi-

mations could provide this proposal distribution. This way, we can retain the flexible re-use permitted by

variational inference, as well as the asymptotic guarantees of sampling. As we will see in Chapters 5 and

7, such a joint model allows us to parsimoniously explain a wide range of different inferential errors that

could not be modeled by any one mechanism alone. This is discussed in greater detail in the discussion

section of Chapter 7.

4.3.3 Amortization in discriminative machine learning

In this section, we briefly discuss how ‘pattern-matching’ methods popular in modern machine learning,

can be seen as amortizing inference over past experience. We limit our discussion here to a simple case

of discriminative classification. In the section on amortization in cognitive science, we also discuss vari-

ous reinforcement learning (RL) methods (that are also popular in modern machine learning) and their

inputs. See Chapter 7 for a more detailed discussion of this.
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interpretation as amortized inference.

The main difference between our discussion of amortization so far (in various approximate inference

methods) and most realizations of amortization in machine learning, is that for many machine learning

applications, ‘potential knowledge’ has not already been acquired. It is instead obtained in tandem with

learning how to go from potential to realized knowledge. In other words, learning about the world, and

learning how to think are not done separately. These are called discriminative methods; as opposed to

generativemethods that explicitly learn the generativemodel (potential knowledge) and then proceedwith

inference in that model (realized knowledge). Both these approaches (generative and discriminative) are

ubiquitous in machine learning with competing advantages for each 325,264.Themachine learningmethods

we discuss in this thesis (in Chapters 8 and 9) are discriminative. I give a simple example of discriminative

classification here, to give an intuition for how thesemethods can be interpreted as a form of amortization.

The basic classification problem is that of categorizing various inputs {x} into various classes {y}. This

can be seen as computing some probability distribution P(y|x) i.e. the probability distribution over class

labels given a specific input xi, and then employing some decision rule to assign that input to different

classes, based on the obtained distribution.* We can look at this as a multinomial (or binomial) posterior

distribution over class labels, conditioned on the data x. The difference between our previous discussions

and this one, is that we do not know the joint distribution already, and therefore cannot ‘learn’ this func-

tion by maximizing ELBO like we did in the variational case. Instead, a common approach is to learn it

with supervision – i.e. by receiving observations of the right classification, andmaximizing the probability

of the true class labels under our discriminative classifier. Discriminative classifiers can also be learned via

reinforcement learning, as we will discuss briefly in the next section. The idea is that once this conditional

distributionP(y|x) has been learned over a series of training examples, this function can be used to predict

the conditional distribution in new test examples, or new x’s that have not been observed. This can be

done with a single pass through this learned regression from input to class label. In other words, the com-

*The generative approach to this problem would be to explicitly learn the model described by the joint distri-
bution P(x, y) = P(y)P(x|y), and subsequently use Bayes’ rule to find P(y|x). Inference in such generative models
can also be amortized, for example by using the approaches discussed earlier for amortization within approximate
inference algorithms.
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putations that would otherwise have gone into explicitly computing the posterior P(y|x), had we known

the jointP(y, x) have been amortized, and have been encoded alongwith the relevant potential knowledge

about P(x, y), in this discriminative function. This is similar to the amortized variational approximation

we learn in the previous section, except the learning signal that we used to learn the function is different

(supervised or reinforcement learned in this setting, as opposed to via maximization of ELBO). In Chap-

ter 8 we study one such supervised classifier, and in Chapter 9, we consider a classifier that is learned via

reinforcement learning.

4.3.4 Meta-learning and amortization

The idea behind meta-learning is to gain information over a distribution of learning tasks, about how to

learn in new tasks from the same distribution. In other words, we can learn to learn by abstracting out

higher level information about the space of learning tasks, and thereby benefit future learning. Many fea-

tures of a learning algorithm can be ‘meta-learned’ in this way, including the optimization algorithm to

be used in new learning problems 10, good initial weight parameters 116, the right metric space for gauging

similarities465, as well the use of external memory 395. In the same way that the discriminative methods

discussed in the previous section blur the lines between gaining potential knowledge and converting po-

tential to realized knowledge, meta-learning is agnostic towhether what it learns from its experience is new

information about the world (learning about the underlying process that is generating the distribution of

learning tasks), or how to make best use of information in a new learning task (faster, more efficient amor-

tized inference strategies). Meta-learning has been characterized as hierarchical Bayesian inference, where

what is being learned are abstract priors over the space of learning tasks. This is equivalent to the first

kind of learning, where what is gained is new potential knowledge: information about the space of tasks

gained from solving one task can transfer to the learning of other tasks from the same distribution. 339,173,178

However, meta-learningmethods usually also implicitly learn amortized inference strategies. I discuss this

in greater detail in Chapter 9, as well provide a more extensive discourse on the distinction between these

two kinds of learning in the Conclusion (Chapter 10).
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4.4 Amortization in cognitive science

Here, I review how amortization has been an implicit part of many approaches to modeling human cog-

nition, focusing in particular on two domains: Inference and planning. Planning can be seen as a special

case of inference43, but these have historically been studied as separate problems, with various approaches

to each developing independently. Seeing both of these historically distinct directions of research through

the common lens of amortization highlights the wide range of behaviors this principle of computational

re-use can unite, and also facilitates the exchange of ideas between the two.

4.4.1 Amortization in Inference

I first briefly reiterate the computational problem underlying Bayesian inference. In many real-world situ-

ations, people have to combine information from many sources, in order to make judgments about prob-

abilistic outcomes. As discussed in Chapter 2, Bayesian inference provides a normative computational

account of what should be done. The first step in Bayesian inference is acquiring the requisite potential

knowledge– i.e. to collect information from theworld in order to informa joint distributionP(h, d). This

includes learning a prior distributionP(h) as well as a likelihood functionP(d|h). Wewill assume that this

step is already complete. The second step, that we focused on in Chapter 3 is of going from the possible

to realized knowledge. Given data d, Bayes’ rule stipulates how a rational agent should update its prior

probabilistic beliefs P(h) about hypothesis h, to give normalized posterior probabilities P(h|d). In case

of many underlying hypotheses (as is often the case), this denominator is difficult and often intractable

to calculate. Therefore, despite having the requisite ‘possible ’ knowledge in the form of the generative

model P(h, d), achieving the ‘realized’ knowledge of the posterior probabilities remains a computational

challenge.

Amortization suggests that this computation be spread out over previously encountered queries. This

suggests that greater experience in a domain, or practice in the domain, will lead to faster inferences. This

has been found and studied extensively in the literature on practice 166,322 and automatic processing412,282,

even after there is no new information to be gained by increased experience. As phrased by Logan 282 :

“Automaticity is memory retrieval: Performance is automatic when it is based on single step
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direct-access retrieval of past solutions frommemory. The theory assumes that novices begin
with a general algorithm that is sufficient to perform the task. As they gain experience, they
learn specific solutions to specific problems, which they retrieve when they encounter the
same problems again.”

Amortization formalizes this notion of flexible re-use of past computations, despite already having a

‘general algorithm sufficient to perform the task’. This allows faster, more automatic inferences withmore

experience.

This results in a dependence on the history of queries observed, leading to another key prediction of

amortizing inference. If there is additional structure in this historical query set, we expect the development

of ecologically rational shortcuts that reflect this structure. If computations were being carried out from

scratch – computing realized knowledge from potential knowledge each time – there would be no differ-

ence in behavior between common and uncommon queries. However, shortcuts learned via amortization

might give close to optimal responses on commonly observed queries, but would give poor performance

on uncommon ones. The use of heuristic-based strategies has been observed in experts in various domains

such as legal decisions 88, andmedicine 367, where themost general, normative decision strategy involves sev-

eral variables and is often too complex for easy full consideration. Garcia-Retamero&Dhami 129 find, in a

domain of criminality and law enforcement, that expert behavior is better described by heuristic strategies,

while laypeople are better described by a full regression to the relevant variables. These provide prelimi-

nary evidence that these heuristic strategies are in fact learned from experience, and amortization provides

a mechanism for how these context-sensitive heuristics might arise. We discuss this adaptation to the eco-

logical distribution of queries in Chapters 5, 6 and 7. We will also see how statistical structure in the query

distribution informs inference procedures learned in discriminative artificial systems in Chapters 8 and 9.

4.4.2 Amortization in Planning

In this section, I briefly discuss the computational challenge of exact planning, and how amortization fits

into the framework of approximate planning. Discussing amortization in this additional domain allows

for a better understanding of the concept. I then discuss parallels to themain focus of this thesis i.e. amorti-

zation in inference, and possible applications of the developments in amortized planning to this problem.
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The planning problem

The goal of planning is also to leverage information one has about the world (realized knowledge) in order

to achieve a specific goal (potential knowledge), and themain challenge is in the computations that go from

potential to realized knowledge. This problem has been commonly studied in a Markov Decision Process

paradigm, in the context of Reinforcement Learning (RL). The framework here is that an agent has a fixed

set of actions (a ∈ A) it can perform on the world, in order to receive reward (r). This reward depends

on both the state of the world the agent is in (s ∈ S) as well as the action taken, as defined by a reward

function r = R(s, a). The goal is tomaximize this earned reward, over some fixed or discounted (by some

factor γ < 1) time horizon. The effect of an action will depend on the state of the world the agent is in,

and can cause a transition from one state s to another state s′ as defined by a transitionmodelP(s′|s, a). A

common assumption, that makes the problemmore tractable, is that the transitions and reward structure

areMarkov – i.e. that when taking action a in state s, which state we transition to as given by P(s′|s, a) as

well as the reward earned R(s, a) depend only on the current state and current action and is independent

of the history of any previous states or actions.

In a planning problem, the transition probabilities and reward functions are known. This consists of

all the potential knowledge about this domain. The challenge in converting this to realized knowledge is

to construct a policy π : S → A that determines what action to take at each state, in order to maximize

the reward earned. The number of possible trajectories through the Markov Decision Process is exponen-

tially large, and potentially infinite if there are cycles, and evaluating every possible policy – despite already

having all the potential knowledge in the domain – is computationally very challenging and often entirely

intractable.

Amortization of previous computations, to better inform a policy, is a common approach to easing the

burden of planning. The classic approach to this problem is to use dynamic programming or caching in

the form of Bellman back-ups, where the expected reward associated with a state s, under a fixed policy π

is written as

46



Vπ(s) = r(s) + γ
∑
s′∈S

P(s′|s, πs)Vπ(s′) (4.1)

By writing the value of one state in terms of the value of another state, we can re-use the computations

that went into computing these other values. These values can be computed iteratively with updating the

policy, to find the optimal policy that maximizes reward using an algorithm called value-iteration.

In cases where we might have a very large number of possible states, learning a table of these values

becomes intractable. This includes most real-world problems which in fact often have continuous state

spaces. In these cases, we can learn a function that takes in properties of a state s and returns its value

V(s). This way, even if the table of values actually computed (with dynamic programming in a known

model) is sparse, and the values of other intermediate states are unknown, the function might be able to

pick out (possibly heuristic) structure in the mapping from state to value. If this mapping is accurate, the

function can generalize reasonably to new states without direct experience of that state. This is analogous

to our discussion of amortization in a variational framework where ‘similar’ queries can still benefit from

computational re-use.

So far, we have only considered amortization as a solution to planning in amodel in which themodel is

exactly known. However, inmany cases, themodel is either not known. This is the broader reinforcement

learning problem, where one must also obtain the relevant ‘potential knowledge’ in terms of reward and

transition structure, simultaneously with planning. Here as well there are two main approaches to this

problem. First, is model-based reinforcement learning. This is a generative approach where the model is

first learned and then the value function and resultant policy can be iteratively computed with planning,

as discussed previously. Second, is model-free reinforcement learning. This is a discriminative approach

where the value and/or policy are learned directly from experience with the environment via stochastic

rewards received in the environment. * Potential and realizedknowledge arenot encoded separately and are

simply learned end-to-end. A similar approach is often used to obtain not just state-specific values, but the

*Although we follow this convention for the rest of the section, we note here that calling this discriminative
method ‘model-free’ can be misleading. It can instead be characterized as learning a simpler model that maps states
directly to a value or to a policy. We expand on this interpretation in our discussion on simultaneous learning of
model and inference in Chapter10.
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value of state-action pairs in a process known as Q-learning476. Model-free methods are also often used in

cases where themodel is known, but is too complex to perform effective planning on (evenwith help from

dynamic programming). Efficient algorithms for these model-free approaches to reinforcement learning,

pairedwith the generalization and representational capacity of deepneural networks, underliemany recent

successes in artificial intelligence 312, as well as underlies the artificial agent we analyze in Chapter 9.

Studies in cognitive science

In cognitive science, amortized planning has largely been studied in the context of the larger reinforcement

learning problem. Therefore, rather than as amortization within a model-based framework, it has largely

been studied directly as model-free approaches to reinforcement learning. If we have the right model, and

infinite experience to learn model-free values, then exact planning in a model, and the learned model-free

values will correspond exactly. However, most studies of reinforcement learning and decision making in

natural intelligence distinguish these kinds of learning by leveraging the fact thatmodel-free values are very

efficient once they have been learned but adapt very slowly to changes in reward structure and transition

probabilities, whereas model-based inference is equally expensive with a new or an old transition / reward

function77. These are also distinguished based on the extent of cognitive effort required and available

at run-time, with the logic that model-free values are habitual and automatic, requiring less processing

than planning in a model 340,250. The neural realizations of these different learning systems have also been

studied extensively 162,332.

To better draw parallels to our discussion of amortization in inference, we consider a hybrid between

model-based and model-free systems, namely the DYNA architecture444. Here, the model is learned and

stored i.e. all potential knowledge is explicitly acquired based on external experience. However, model-

free values are not learned solely from interaction with the environment, and are instead updated using

simulations in this model. Updating model-free values using a model is analogous to our discussion of

amortization in inference. The only computations being amortized are in going from potential to real-

ized knowledge – analogous to amortizing the cost of approximating Bayesian inference despite already

knowing the joint distribution. Evidence of DYNA-like behavior has also been found in humans 146.
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Other approaches to reinforcement learning also implicitly invoked amortization of planning. The suc-

cessor representation 81 is an ecologically rational adaptation to worlds in which the transition function

P(s′|s, a) does not often change, but the reward function R(s, a) does. This implicitly amortizes com-

putations by re-using past experience of transition probabilities, but remains flexible on reward structure.

Episodic approaches to reinforcement learning– where the computational challenge is to learn similarity

functions to previous experience, to facilitate adaptive re-use 141 – can also be seen as amortization. Kera-

mati et al. 239 also suggestsways to cache computationswithin amodel-based framework. Certain aspects of

planning can also be meta-learned (see the earlier section onmeta-learning for details), thereby amortizing

some of its costs42. In fact we will see in Chapter 9, how amortizedmodel-free methods in ameta-learning

framework can also lead to realizations of other more complex amortized inference procedures.

Amortized planning also has implications for the strategy selection problem discussed earlier in the

context of domain-specific, ecologically rational heuristics in Chapter 2. Choosing the right strategy has

often been framed as meta-cognitive reinforcement learning problem. 102,372,270. Here an agent operates

in a ‘meta-cognitive Markov Decision Process’ and decides how much information to gather, how much

cognitive energy to invest, and what inference strategies to use, with the ultimate goal of optimizing a

bounded rationality objective function that rewards good inferences and penalizes costs. Without further

assumptions, optimal planning in this Markov Decision Process remains intractable, and amortized plan-

ning methods developed in reinforcement learning suggest possible solutions.

49



5
Ecologically rational constraints on sampling

Why are human inferences sometimes remarkably close to the Bayesian ideal and other times systemati-

cally biased? In this chapter, we focus on a specific, notable, instance of this discrepancy: in tasks where

the candidate hypotheses are explicitly available result in close to rational inference over the hypothesis

space, whereas tasks requiring the self-generation of hypotheses produce systematic deviations from ratio-

nal inference. Wepropose that these deviations arise from algorithmic processes approximatingBayes’ rule,

under ecological constraints.

In this account, hypotheses are generated stochastically from a sampling process, such that the sampled

hypotheses form a Markov chain Monte Carlo approximation of the true posterior. While this approx-

imation will converge to the true posterior in the limit of infinite samples, we take a small number of

samples as we expect that the number of samples humans take is limited by time pressure and cognitive

resource constraints. This implements a boundedly rational approach to probabilistic inference. More

explicitly ecological considerations enter our process model of approximate inference by initializing the
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chain at query-specific information acquired from the framing of the question. A random initialization in

a large hypothesis space gives slow convergence, and initializing at query-specific cue is likely ecologically

rational, since cues in the environment are often correlated with good responses to the queries they posit *.

However, this initialization can lead to biased inferences in environments where the ecological rationality

of initializing at these environmental cues is manipulated.

Under these ecological constraints on a Markov chain Monte Carlo approximation algorithm for hy-

pothesis generation, ourmodel recreates several well-documented experimental findings such as anchoring

and adjustment, subadditivity, superadditivity, the crowd within as well as the self-generation effect, the

weak evidence, and the dud alternative effects. Additionally, we confirm the model’s prediction that su-

peradditivity and subadditivity can be induced within the same paradigm bymanipulating the unpacking

and typicality of hypotheses. Our model predicts higher biases when under cognitive load or time pres-

sure, since these reduce the amount of computation possible, which manifest in our model as a reduced

number of samples. We partially confirm our model’s prediction about these manipulations with novel

experiments. Our model also satisfies the requirements outlined in Section 3.4.2 such that the additional

value of computation can be locally approximated, suggesting a plausiblemechanism for actively choosing

the optimal amount of computation.

5.1 How do we generate hypotheses?

In his preface to Astronomia Nova (1609), Johannes Kepler described how he struggled to find an accu-

rate mathematical description of planetary motion. Like most of his contemporaries, he started with the

hypothesis that planets move in perfect circles. This necessitated extraordinary labor to reconcile the equa-

tions of motion with his other assumptions, “because I had bound them to millstones (as it were) of cir-

cularity, under the spell of common opinion.” It was not the case that Kepler simply favored circles over

ellipses (which he ultimately accepted), since he considered several other alternatives prior to ellipses. Ke-

*In Chapter 7, we also discuss how ecologically rational anchors can be learned based on a priori knowledge of
the domain, in the absence of explicit cues from the environment to initialize at.
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pler’s problem was that he failed to generate the right hypothesis.*

Kepler is not alone: the history of science is replete with examples of “unconceived alternatives”434, and

many psychological biases can be traced to failures of hypothesis generation, as we discuss below. In this

paper, we focus on hypothesis generation in the extensively studied domain of probabilistic inference. The

generated hypothesis are a subset of a tremendously large space of possibilities. Our goal is to understand

how humans generate that subset.

In general, probabilistic inference is comprised of two steps: hypothesis generation and hypothesis eval-

uation, with feedback between these two processes. Given a complete set of hypothesesH and observed

data d, optimal evaluation is prescribed by Bayes’ rule, which assigns a posterior probabilityP(h|d) to each

hypothesis h ∈ H proportional to its prior probabilityP(h) and the likelihood of the observed data under

h, P(d|h):

P(h|d) = P(d|h)P(h)∑
h′∈H P(d|h′)P(h′)

. (5.1)

Many studies have found that whenH is supplied explicitly, humans can come close to the Bayesian ideal

e.g. Griffiths & Tenenbaum 181,183 , Frank & Goodman 123 , Petzschner et al. 357 , Oaksford & Chater 330 .†

However, when humans must generate the set of hypotheses themselves, they cannot generate them all

and instead generate only a subset, leading to judgment biases.448,91,57,252,477,152 Some prominent biases of

this kind are listed in Table 6.1.

Most previously proposed models of hypothesis generation rely on cued recall from memory based on

similarity to previously observed scenarios (c.f. Thomas et al. 448 ,Gennaioli&Shleifer 133). Theprobability

*In fact, Kepler had tried fitting an oval to his observations only to reject it, and then labored for another seven
years before finally trying an ellipse and realizing that it was mathematically equivalent to an oval. As he recounted,
“The truth of nature, which I had rejected and chased away, returned by stealth through the back door, disguising
itself to be accepted... Ah, what a foolish bird I have been!”

†This correspondence between human and Bayesian inference requires that the inference task must be one that
is likely to have been optimized by evolution (e.g., predicting the duration of everyday events, categorizing and locat-
ing objects in images, making causal inferences), typically in domains where people have strong intuitive knowledge
about the relative probabilities of hypotheses; asking humans to reason consciously about unnatural problems like
randomness or rare events see 59 for discussion, or carry out explicit updating calculations 352, tends to produce devia-
tions from the Bayesian ideal.
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Table 5.1: Biases in human hypothesis generation and evaluation.

Name Description Reference

Subadditivity Perceived probability of a hypothesis is
higher when the hypothesis is described as
a disjunction of typical component
hypotheses (unpacked to typical
examples).

Fox & Tversky 122

Superadditivity Perceived probability of a hypothesis is
lower when the hypothesis is described as a
disjunction of atypical component
hypotheses (unpacked to atypical
examples).

Sloman et al. 425 ,
Hadjichristidis
et al. 191

Weak evidence effect The probability of an outcome is judged to
be lower when positive evidence for a weak
cause is presented

Fernbach et al. 113

Dud alternative effect The judged probability of a focal outcome
is higher when implausible alternatives are
presented

Windschitl &
Chambers 482

Self-generation effect The probability judgment over hypotheses
that participants have generated
themselves is lower as compared to the
same hypotheses generated by others

Koriat
et al. 252 , Koehler 247

Crowd within The mean squared error of an estimate
with respect to the true value reduces with
the number of guesses. This reduction is
more pronounced when the guesses are
averaged across participants rather than
within participants.

Vul & Pashler 469

Anchoring and Adjust-
ment

Generated hypotheses are biased by the
hypothesis that is prompted at the start.

Tversky &
Kahneman 457
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of a generated hypothesis depends on the strength of its memory, and the number of such hypotheses gen-

erated is constrained by the availableworkingmemory resources. However, inmost naturally encountered

combinatorial hypothesis spaces, the number of possible hypotheses is vast and only ever sparsely observed.

Goodman et al. 168 showed that, when inferring Boolean concepts, people can generate previously unseen

hypotheses byusing compositional rules, insteadof likening the situation topreviously observed situations.

So it seems that humans do not generate hypotheses only from the manageably small subset of previously

observed hypotheses in memory and instead are able to generate hypotheses from the formidably large

combinatorial space of all the conceivable possibilities. Given how large this space is, resource constraints

at the time of inference suggest that only a subset are actually generated.

In this paper, we develop a normative theoretical framework for hypothesis generation in the domain

of probabilistic inference, given fixed data, arguing that the brain copes with the intractability of inference

by stochastically sampling hypotheses from the combinatorial space of possibilities (see also Sanborn &

Chater 392). Although this sampling process is asymptotically exact, time pressure and cognitive resource

constraints limit the number of samples that can be generated, giving rise to systematic biases. Such biases

are “computationally rational” in the sense that they result from a trade-off between the costs and ben-

efits of computation—i.e., they are an emergent property of the expected utility calculus when costs of

computation are taken into account. 144,467,275 We propose that the framing of a query leads to sampling

specific hypotheses first, which biases the rest of the hypothesis generation process through correlations in

the sampling process. This mechanism is potentially ecologically rational under the assumption that cues

in the environment are informative of the good and relevant hypotheses required in response to queries

in that environment. We discuss the properties of various sampler designs to explore the space of possible

algorithms, and choose a specific design that can reproduce all the phenomena listed in Table 6.1. We then

test our theory’s novel predictions in four experiments.

5.2 A rational process model of hypothesis generation

Much of the recent work on probabilistic inference in human cognition has been deliberately agnostic

about its underlyingmechanisms, in order tomake claims specifically about the subjective probabilitymod-
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els people use in different domains. 59 Because the posterior distribution P(h|d) is completely determined

by the joint distribution P(h, d) = P(d|h)P(h), an idealized reasoner’s inferences can be perfectly pre-

dicted given this joint distribution. By comparing different assumptions about the joint distribution (e.g.,

the choice of prior or likelihood) under these idealized conditions, researchers have attempted to adjudicate

between different models. Importantly, any algorithm that computes the exact posterior will yield iden-

tical predictions, which is what licenses agnosticism about mechanism. This method of abstraction is the

essence of the “computational level of analysis”295, and is closely related to the competence/performance

distinction in linguistics and “as-if” explanations of choice behavior in economics.

The phenomena listed in Table 6.1 do not yield easily to a purely computational-level analysis, since dif-

ferent choices for the probabilistic model do not account for the systematic errors in approximating them.

For this reason, we turn to “rational process” models see 185 for a review, which make explicit claims about

the mechanistic implementation of inference. Rational process models are designed to be approximations

of the idealized reasoner, but make distinctive predictions under resource constraints. In particular, we ex-

plore how sample-based approximations lead to particular cognitive biases in a large space of hypotheses,

when the number of samples is limited. With an infinite number of samples, different sampling algorithms

are indistinguishable as they all converge to the ideal response, but these algorithms display different be-

haviors at small sample sizes. We narrow the space of candidate sampling algorithms by studying these

behaviors and comparing their predictions to observed cognitive biases.

5.2.1 Monte Carlo methods

WediscussMonte Carlomethods is detail in Chapter 3. Here we reiterate the basics. In their simplest form,

sample-based approximations also known asMonte Carlo approximations; 376, take the following form:

P(h|d) ≈ P̂N(h|d) =
1
N

N∑
n=1

I[hn = h], (5.2)
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where I[·] = 1 when its argument is true (0 otherwise) and hn is a random hypothesis drawn from some

distribution Qn(h).* When Qn(h) = P(h|d), this approximation is unbiased, meaning E[P̂N(h|d)] =

P(h|d), and asymptotically exact, meaning limN→∞ P̂N(h|d) = P(h|d).

In general, a bounded reasoner cannot directly sample from the posterior, because the normalizing con-

stant P(d) =
∑

h P(h, d) requires the evaluation of the joint probabilities of each and every hypothesis

and is intractable when the hypothesis space is large. In fact, sampling from the exact posterior entails

solving exactly the problem which we wish to approximate. Nonetheless, it is still possible to construct

an asymptotically exact approximation by sampling from aMarkov chain whose stationary distribution is

the posterior; thismethod is known asMarkov chainMonte Carlo (MCMC). Before presenting a concrete

version of this method, we highlight several properties that make it suitable as a process model of hypoth-

esis generation. Some of these properties are shared with other sampling mechanisms, and others make

MCMC more uniquely amenable.

First, all Monte Carlo approximations including MCMC, are stochastic in the finite sample regime,

producing “posterior probability matching”483,86,316,467: hypotheses are generated with frequencies pro-

portional to their posterior probabilities. Second, MCMC does not require knowledge of normalized

probabilities at any stage and relies solely on an ability to compare the relative probabilities of two hypothe-

ses. This is consistent with evidence that humans represent probabilities on a relative scale.436 While this

property is not true of all samplers, it is shared with a large class of sampling mechanisms based on impor-

tance sampling. Third,MCMC allows for feedback between the generation and evaluation processes. The

evaluated probability of already-generated hypotheses influences if and how many new hypotheses will

be generated, consistent with experimental observations. 194 Here the properties of MCMC diverge more

significantly fromparallel samplingmethods like importance sampling, where hypotheses are generated in-

dependently. Fourth, Markov chains (unlike parallel sampling mechanisms such as importance sampling)

generate autocorrelated samples. This is consistent with autocorrelation in hypothesis generation. 147,469,38

Correlation between consecutive hypotheses thatmanifest as anchoring effects where judgments are biased

by the initial hypothesis;457 are replicated by MCMC approximations that are transiently biased (during

*This approach is straightforwardly generalized to sets of hypotheses: P̂N(h ∈ H|d) = 1
N
∑N

n=1 I[hn ∈ H],
whereH ⊂ H.
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the“burn-in” period) by their initial hypothesis.275,277 This seems to hold also true for theway inwhich par-

ticipants update their internal models in causal learning tasks.47 Finally, work in theoretical neuroscience

has shown how MCMC algorithms could be realized in cortical circuits. 53,348,316

Wewill show how some of the biases in Table 6.1 can be replicatedwith samplers that have some subsets

of these properties. Importantly, we will also show how a particularMCMC sampler can capture all of the

biases in Table 6.1.

Computational rationality of sampling

We have emphasized properties that emerge in the finite sample regime because people tend to only gen-

erate a small number of hypotheses.245,379,152,477,90 Although this may seem to be manifestly sub-optimal,

it can be justified within a “computational rationality” or “resource-rational” framework.467,180,144,400 If

generating hypotheses is costly (in terms of time and cognitive resources), then the rational strategy is to

generate the minimum number of samples necessary to achieve a desired level of accuracy. This implies

that incentives or uncertainty should have systematic effects on hypothesis generation. For example, Ham-

rick et al. 194 showed that people generated more hypotheses when they were more uncertain. By the same

token, cognitive load433 or response time pressure91 act as disincentives, reducing the number of generated

hypotheses. As discussed in Chapter 2 (in Section 2.2), this can lead to a problem of ‘turtles all the way

down’ where finding the optimal allocation of cognitive resources can in and of itself be computationally

intractable. However, we also discuss in Chapter 3 (in Section 3.4.2) that under certain conditions, it is

possible to tractably compute: sampling algorithm of the kind we use does fall into this category.

Despite our focus on the finite sample regime, it is also important to consider the asymptotic regime

in order to explain the cases where human inference comes close to the Bayesian ideal. Monte Carlo algo-

rithms are typically asymptotically exact; thus, they can accommodate unbiased inference when adequate

cognitive resources are available. We do not claim, however, that all biases in human inference arise from

adaptive allocation of cognitive resources. It seems likely that evolution has endowed the mind with some

hardwired heuristics in order to avoid the cost of adaptive resource allocation. 156 In Chapter 7 we discuss

how such heuristics might be learned and adaptively chosen between.
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Comparison with particle filtering

A key feature of MCMC is that it produces hypotheses sequentially. As mentioned above, this gives it

properties that distinguish it from parallel sampling mechanisms like importance sampling—specifically,

the feedback between the generation and evaluation processes, and the autocorrelation of samples. It is

therefore useful to compareMCMCwith particle filtering, anotherMonte Carlo algorithm that generates

hypotheses sequentially, and which has also been fruitfully applied to a number of domains in psychol-

ogy, such as multiple object tracking466, categorization 394, and change detection.49 In order to clarify the

distinction between the sequential nature of particle filtering and MCMC, we note that the sequential

structure of particle filtering is dictated by the sequential nature of the generative process. For example, in

multiple object tracking, the object positions are dynamic latent variables; particle filtering generates new

hypotheses about the positions after each new data point is observed. Particle filters can also be used for

inferring static parameters63, updating the Monte Carlo approximation as new data arrive. Note that in

this case the generative process is still inherently sequential. In contrast,MCMCalways involves sequential

hypothesis generation, regardless of the structure of the generative process.

MCMC can also be used in conjunction with particle filters: the samples generated by the particle filter

can be “rejuvenated” by applying aMarkov chain operator that preserves the target distribution. 2,447 This

process prevents degeneracy (collapse of the Monte Carlo approximation onto a few samples), a common

problem in particle filtering. Here, the sequential nature of the Markov chain is relevant only locally to

each step of the particle filter, orthogonal to the sequential nature with which the particle filter processes

new data. In this paper, we focus on non-sequential generative models, with no online updating of data,

in order to retain clarity on this point.

5.2.2 A specific Markov chain Monte Carlo algorithm

The space of MCMC algorithms is vast 376, but for the purposes of modeling psychological phenomena

many of the algorithms generate indistinguishable predictions. Our goal in this section is to specify one

such algorithm, without making a strong claim that people adhere to it in every detail. We focus on quali-

tative features of the algorithm that align with aspects of human cognition. Nonetheless, we shall see that
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the algorithm makes accurate quantitative predictions about human probabilistic judgments.

The most well-known and widely-used version of MCMC is the Metropolis-Hastings algorithm. This

is described in greater detail inChapter 3. Here, at stepn in theMarkov chain, new suggestionsh′ are drawn

from a proposal distribution Q(h′|hn), where hn is the hypothesis at step n. This proposal is accepted or

rejected according to:

P(hn+1 = h′|hn) = min
[
1,

P(d|h′)P(h′)Q(hn|h′)
P(d|hn)P(hn)Q(h′|hn)

]
. (5.3)

If the proposal is rejected, then the chain stays at the same hypothesis, hn+1 = hn. Although the pos-

terior cannot be directly evaluated, we assume it is known up to a normalizing constant, since P(h|d) ∝

P(d|h)P(h). The acceptance function forces moves to higher probability hypotheses, while also stochas-

tically exploring lower probability hypotheses. This process repeats until N samples have been generated.

In the limit of largeN, the amount of time the chain spends at a particular hypothesis is proportional to its

posterior probability. If N is not large enough, then the samples are affected by the initialization, leading

to biased estimates of the posterior probability. The unique members of the set of accepted samples con-

stitute the generated hypotheses, and the number of times they appear provides their judged probability.

We recap here two psychologically appealing properties of the algorithm mentioned in the previous

section. First, we see that it relies solely on being able to gauge relative probabilities and not on having

good estimates for any absolute probabilities. Second, the acceptance function engenders an interaction

between generation and evaluation by ensuring that if one is at a high probability hypothesis, proposals

are more likely to be rejected and therefore not generated*

The next step is to specify the proposal distribution. For simplicity, we assume that the proposal is

*A low acceptance rate only implies that proposals are lower probability than the current state of the Markov
chain, not that the current hypothesis necessarily has a high probability globally. There may always be higher prob-
ability hypotheses that the proposal distribution fails to propose. Conversely, a high acceptance rate does not nec-
essarily imply a poor current hypothesis. For example, if the proposal distribution is proportional to the posterior
distribution, then all proposals will be accepted.
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symmetric,Q(h′|h) = Q(h|h′). This reduces the acceptance function to:

P(hn+1 = h′|hn) = min
[
1,

P(d|h′)P(h′)
P(d|hn)P(hn)

]
. (5.4)

We also assume that the proposal distribution is “local”: the proposal distribution preferentially pro-

poses hypotheses that are in some way “close” to the current one. This ensures that the hypothesis gener-

ated next is close to the current one with high probability. The alternative possibility is to instead have a

“global” proposal distribution - for example one that proposes the next hypothesis uniformly at random

from the space of all possible hypotheses, instead of favoring those closer to the current one.

MCMC algorithms always exhibit some autocorrelation as long as the acceptance ratio is less than one

(irrespective of the details of the proposal distribution), because the same state occurs consecutively when

a proposal is rejected. However, we are also interested in the next new hypothesis that is generated, not

exact repetitions of the same hypothesis. A more nuanced notion of autocorrelation takes into account

the fact that sampled hypotheses can be “similar” (though not identical) when the proposal distribution is

centered on a local neighborhood of the current hypothesis, as opposed to if the proposal is a “global” one.

This kind of locality in determining the next state given the current one, has been studied previously in the

context of traversing and searching semantic networks 1 and combinatorial spaces.428 This locality has been

shown to be optimal as a foraging strategy 211 as well as consistent with human behavioral data. Since the

generation of hypotheses is largely analogous to a search through the combinatorial space of conceivable

possibilities, locality in the proposal distribution that moderates this search can be expected.

The question then is how we should define locality. This is relatively easy to answer in domains where

the inference is over a one-dimensional continuous latent variable like in Lieder et al. 273 ; for example, one

can use a normal distribution centered at the current hypothesis. For the discrete combinatorial hypothesis

spaces studied in this paper, we assume that there is some natural clustering of the hypotheses based on

the observations they tend to generate (their centroids). We use the Euclidean distance between centroids

as a measure of distance between clusters. In our simulations, we assume for simplicity that all hypotheses

within a cluster are equidistant and that all clusters are equidistant from each other. The proposal distri-

bution chooses hypotheses in the same cluster with a higher probability than those outside the cluster, but
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it treats all hypotheses within a cluster equiprobably. While this structure induces locality in the proposal

distribution, we are not making a strong claim about the nature or role of clustering in hypothesis gen-

eration. We speculate about more sophisticated proposal distributions in the section on limitations and

future extensions.

Finally, we need to specify how the chain is initialized. For cases where a hypothesis is presented ex-

plicitly or primed in the query, we assume that the chain starts at that hypotheses. If there are several

hypotheses (say n in number) that have been presented explicitly in the query, we assume that a different

chain starts from each of these hypotheses and runs for N
n steps each, giving a total ofN samples. However,

in cases where no hypotheses are explicitly prompted, we assume that the initial hypothesis is drawn from

the prior over the hypotheses instead of initializing at a prompted example. This assumption is consistent

with evidence that hypotheses with high base rates aremore likely to be generated.477 In order tomaximize

similarity to the corresponding “explicitly prompted” version of the question and keep the number of new

initializations the same, n such chains are run for N
n steps to give a total of N samples. There may also be

initialization schemes that mix explicit prompts and sampling from the prior—for example a prompt that

encourages sampling from a specific subset of the hypothesis space. We speculate aboutmore sophisticated

initialization schemes in the section on limitations and future extensions.

5.3 Model simulations of historically observed effects

In this section we apply our model to a range of empirical phenomena, using a disease-symptom Bayesian

network as our running example. For each simulation, we run the Markov chain many times and average

the results, in order to emulate multiple participants in an experiment.

5.3.1 Diagnostic hypotheses in a disease-symptom network

Ourmodel is generally applicable to domainswhere the inference is carried out over a large space of possibil-

ities that is sparsely observed and thus requires one to generate previously unobserved possibilities. A data

set containingmedical symptoms is a prototypical example of this problem: a patient could have any com-

bination of more than one disease andmany such combinations will not have been encountered before by
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an individual clinician. This combinatorial structure makes medical diagnosis computationally difficult—

exact inference in a Bayesian network is known to be NP-hard66. To address this problem, approximate

probabilistic inference algorithms (includingMonte Carlomethods) are nowwidely-established e.g. Shwe

& Cooper 414 , Jaakkola & Jordan 219 , Heckerman 201 . It is therefore reasonable to conjecture that diagnos-

tic reasoning by humans could be captured by similar approximate inference algorithms. Suggestively, a

number of the judgment biases listed in Table 6.1 have been documented in clinical settings 363,100,477; our

goal is to investigate whether the MCMC model can reproduce these biases.

In the disease-symptom network, the observations are the presence or absence of symptoms and the

latent variables are the presence or absence of diseases (S possible symptoms andD possible diseases). The

diagnostic problem is to compute the posterior distribution over 2D binary vectors, where each vector

encodes the presence (hd = 1) or absence (hd = 0) of diseases d = 1, . . . ,D. The diseases are connected

to the symptoms via a noisy-or likelihood, following Shwe et al. 415 :

P(ks = 1|h) = 1− (1− ε)
D∏

d=1

(1− wds)
hd , (5.5)

where ks = 1 when symptom s = 1, . . . , S is present (0 otherwise), ε ∈ [0, 1] is a base probability of

observing a symptom, and wds ∈ [0, 1] is a parameter expressing the probability of observing symptom s

when only disease d is present. Intuitively, the noisy-or likelihood captures the idea that each disease has

an independent chance to produce a symptom.

As our goal is to use this set-up purely for illustrative purposes, we use a simplified fictitious disease-

symptom data set designed to resemble real-world contingencies (Table 5.2). We designated two distinct

clusters of four diseases each (gastrointestinal diseases and respiratory diseases); these two clusters have

largely disjoint sets of symptoms, and the symptoms within a cluster are largely overlapping. We allow any

combination of diseases to be present, making even this small number of diseases a fairly large space of 256

possible hypotheses.
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Table 5.2: Parameters used for noisy-or model.

Symptoms Diseases
lung
cancer TB resp.

flu cold gastro-
enteritis

stomach
cancer

stomach
flu

food poi-
soning base

Prior 0.001 0.05 0.1 0.2 0.1 0.05 0.15 0.2 1.0
cough 0.3 0.7 0.05 0.5 0.0 0.0 0.0 0.0 0.01
fever 0.0 0.1 0.5 0.3 0.0 0.0 0.1 0.2 0.01
chest pain 0.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.01
short breath 0.5 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.01
nausea 0.0 0.0 0.2 0.1 0.5 0.1 0.5 0.7 0.01
fatigue 0.0 0.0 0.2 0.3 0.1 0.05 0.2 0.4 0.01
bloating 0.0 0.0 0.0 0.0 0.3 0.05 0.1 0.5 0.01
abdom. pain 0.0 0.0 0.01 0.0 0.1 0.5 0.0 0.0 0.01

5.3.2 Subadditivity

As described above, a resource-rational algorithmwill arrest computation after a small number of samples,

once accuracy is balanced against the cost of sampling467. This gives rise to subadditivity (see Table 6.1):

the probability of a disjunction (in “packed” form) is judged to be less than the probability of the same

disjunction presented explicitly as the union of its sub-hypotheses (in “unpacked” form)460,91, despite the

fact thatmathematically these are equal. For example, the probability of a gastrointestinal disease is judged

to be less than the sum of the probabilities of each possible gastrointestinal disease.

Let us define a few terms here that we use in our simulations of these unpacking effects. The space of

hypotheses that the disjunction refers to is called the focal space of the query. For example, when queried

about the probability of a gastrointestinal diseases, the focal space is the set of all hypotheses that include

at least one gastrointestinal disease. When unpacking this disjunction, we do not unpack to every single

member of the focal space. Instead, we unpack to a few examples and to a catch-all hypothesis that refers

to all other members of the focal space that were not explicitly unpacked. For example: “Food poisoning,

stomach cancer or any other gastrointestinal disease” where a few example components of the focal space

are unpacked and explicitly prompted in the question (food poisoning and stomach cancer) and presented
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Figure 5.1: Subadditivity. MCMC estimates were made for the following queries: Given the symptoms fever, nausea and
fatigue, (a) Packed: what is the probability that these symptoms were caused by the presence of a gastrointestinal disease?
(b) Unpacked to typical examples: what is the probability that these were caused by the presence of food poisoning, stomach
flu, or any other gastrointestinal diseases? The estimate for the unpacked condition is higher than that of the packed condition.
The difference between these estimates is represented by the red line. This effect diminishes as the number of samples
increases.

along with a catch-all hypothesis (any other gastrointestinal disease).*

Ourmodel offers the following explanation of subadditivity: when a packed hypothesis is unpacked to

typical examples and a catch-all hypothesis, the typical examples (that are part of the focal space) are explic-

itly prompted, causing the Markov chain to start there and thus include them in the cache of generated

hypotheses. If the examples are not explicitly prompted and instead a packed hypothesis is presented, the

chain initializes with a random sample from the prior. The chain is thus likely to start from a fairly typi-

cal (high prior probability) hypothesis; however, with some probability it may fail to generate all the high

probability hypotheses. Deterministically initializing the chain at a typical (high probability) hypothesis,

*In this paper, we study what is termed “implicit” subadditivity, where the unpacked query is framed as a con-
junction ofmutually exclusive sub-hypotheses, in contrast to “explicit” subadditivity, where eachmutually exclusive
sub-hypothesis is queried separately and the numerical estimates from each query are then added together. Explicit
subadditivity could bemodeled the same way as implicit subadditivity if we assume that the number of samples gen-
erated over the separately queried sub-hypotheses is equal to the net number of hypotheses generated in response to
the conjunction, and that no samples are carried over in between the separately queried hypotheses.
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ensures that the chain generates high probability hypotheses in the focal space and thus results in a larger

probability judgment for that focal space. This effect can also be replicated by a parallel sampling algo-

rithm as seen in Thomas et al. 448 . Here explicitly prompted hypotheses (under the unpacked condition)

are appended to the other samples that would have been generated without prompting (under the packed

condition), leading to more hypotheses in the focal space being generated in the unpacked condition and

therefore raising the probability estimate under that condition.

To illustrate this effect in our medical diagnosis model, consider the following queries:

• Packed query: Given the symptoms fever, nausea and fatigue, what is the probability that these
symptoms were caused by the presence of a gastrointestinal disease?

• Unpacked query (typical examples): Given the symptoms fever, nausea and fatigue, what is the
probability that these symptoms were caused by the presence of food poisoning, stomach flu, or
any other gastrointestinal diseases?

The difference between the probability estimates between these two conditions is shown in Figure 5.1.

Experiments in Dougherty & Hunter 91 show that the effect size of subadditivity decreases as the par-

ticipants are givenmore time to answer the question. In our model, as more samples are taken, it becomes

more and more likely that the packed chain also finds the high probability examples prompted in the un-

packed scenario on its own. So the head-start given to the unpacked chain gets gradually washed out and

the effect size of subadditivity decreases. If we assume that as more time passes, people take more samples

(up until a resource-rational limit on the number of samples), and that the time-points measured are be-

fore the resource-rational sample limit is met, our model replicates these time-dependence effects as seen

in Figure 5.1.

5.3.3 Superadditivity and related effects

Taking a limited number of samples with anMCMC sampler can also give rise to an effect opposite to the

one described in the previous section, known as superadditivity (see Table 6.1): the probability of a dis-

junction (in “packed” form) is judged to be greater than the probability of the same disjunction presented

explicitly as the union of its sub-hypotheses (in “unpacked” form)425,191, despite the fact that mathemati-
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cally they should be equal. This effect occurs when unpacking to atypical (low probability) examples and

subadditvity prevails when unpacking to typical (high probability) examples.

The key feature that produces this effect is the acceptance function of theMCMC sampler and the feed-

back it causes between the generation and evaluation processes. If a chain is at a low probability hypothesis

(such as when a low probability hypothesis is explicitly prompted in the form of an atypical unpacking),

the chain is likely to acceptmore of the proposals made by the proposal distribution. Therefore, this chain

could generate many alternate hypotheses outside the focal space. In contrast, a chain at a higher probabil-

ity hypothesis (for example, if it was randomly initialized in the focal space instead of being initialized at a

particularly atypical example) will reject more of these proposals and remain at the initial hypothesis. So

most of these proposals will not be generated. The probability estimate for the focal spaceA is given by

∑
h∈A

P̂(h|d) =
∑
h∈A

1
N

N∑
n=1

I[hn = h] =
∑

h∈A
∑N

n=1 I[hn = h]∑
h∈A

∑N
n=1 I[hn = h] +

∑
h′ /∈A

∑N
n=1 I[hn = h′]

(5.6)

Being inA or not divides the total hypothesis space ofH into twomutually exclusive parts. Therefore,

the generation of more hypotheses outside the focal space (on average) when initialized at a consistently

lowprobability (atypical) hypothesis in the focal space lowers the resulting probability estimate of the focal

hypothesis space. This results in superadditive judgments.

To elucidate this effect in our medical diagnosis model, we use the following “unpacked to atypical ex-

amples” query: Given the symptoms fever, nausea and fatigue, what is the probability that these symptoms

were caused by the presence of gastroenteritis, stomach cancer, or any other gastrointestinal disease? The

difference between the probability estimates from the two conditions is shown in Figure 5.2.

Previous accounts of subadditivity e.g. Thomas et al. 448 ,Neil Bearden&Wallsten 320 cannot explain su-

peradditivity; any unpacked example only increases the probability judgment of the unpacked query with

respect to the packed query. This weakness of MINERVA-DM has been observed by Costello & Watts 67

in the context of its failure to model binary complementarity—an effect which their noise-based analysis

can capture. However, their analysis still fails to completely capture superadditivity, as it constrains un-

packed judgments to be greater than (and, only for binary complements, equal to) the packed judgment,
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Figure 5.2: Superadditivity. MCMC-estimates were made for the following queries: Given the symptoms fever, nausea and
fatigue, (a) Packed: What is the probability that these symptoms were caused by the presence of gastrointestinal disease? (b)
Unpacked to atypical examples: What is the probability is that these symptoms were caused by the presence of gastroenteritis,
stomach cancer, or any other gastrointestinal disease? The estimate for the unpacked condition is lower than that of the packed
condition. The difference between these estimates is represented by the red line. This effect diminishes as the number of
samples increases.
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never less than the packed judgment. Ourmodeling of this effect hinges on the fact thatMCMC allows for

feedback between the generation and evaluation processes—the evaluated probability of already generated

hypotheses influences how many new hypotheses will be generated. This property is not shared by paral-

lel sampling algorithms. However, other samplers (besides MCMC algorithms) that exhibit correlated

sampling may exhibit similar behaviors see for example 38.

Sloman et al. 425 explain superadditivity by suggesting that atypical examples divert attention frommore

typical examples and thus lower the probability estimate. But an explanation at the level of a rational

process model is, to our knowledge, lacking in the literature.

Some other cognitive effects can also be modeled by the same mechanism that gives rise to superaddi-

tivity. One example is the weak evidence effect: the perceived probability of an outcome is lowered by the

presence of evidence supporting a weak cause. Fernbach et al. 113 explain this effect as follows: mention-

ing evidence in support of a specific weak cause drives people to focus disproportionately on it and thus

they fail to think about other good candidates in the focal space of possible causes. Our model replicates

this effect by initializing at the weak cause, or low-probability hypothesis, resulting in a lower probabil-

ity judgment of the focal space by the same mechanism as in the superadditivity effect. However, the

added evidence should normatively increase the probability of the cause it supports. Since the evidence is

weak, this increase is small and the cause still remains low probability. Therefore, the superadditivity effect

overwhelms this small increase in probability of the specific hypothesis and instead lowers the probability

estimate of the focal space overall. This causes the final judged probability to be lower than if the positive

evidence had not been presented and the chainwas initialized randomly (on average at a higher probability

hypothesis than the presented weak one) in the focal space.

To elucidate this effect in our medical diagnosis model, we use the following query:

• Control: Given the symptoms fever, nausea and fatigue, what is the probability that these symp-
toms were caused by the presence of gastrointestinal disease?

• Evidence for a weak cause: Given the symptoms fever, nausea and fatigue, what is the probability
that these symptoms were caused by the presence of gastrointestinal disease, assuming the patient’s
grandmother was diagnosed with stomach cancer?

The increase in support of theweak cause (stomach cancer), bymaking available the presence of familial

68



●

●

●
●

●
●

●
● ●

●
● ● ●

−0.4

−0.3

−0.2

−0.1

0.0

0 1000 2000 3000 4000 5000

N

P w
ea

k
−

P c
on

tr
ol

Weak evidence effect

Figure 5.3: Weak evidence effect. MCMC estimates were made for the following queries: Given the symptoms fever, nausea
and fatigue, (a) Control: What is the probability that these symptoms were caused by the presence of gastrointestinal disease?
(b) Evidence for a weak cause: What is the probability that these symptoms were caused by the presence of gastrointestinal
disease, assuming the patient’s grandmother was diagnosed with stomach cancer? The increase in support of the weak cause
(stomach cancer) is modeled by increasing the prior probability of stomach cancer from 0.05 to 0.06. The estimate from the
weak evidence chain is lower than that from the control chain. The difference between these estimates is represented by the
red line. The effect diminishes as the number of samples increases.

history, is implemented in our model by increasing the prior probability of stomach cancer in this patient

from 0.05 to 0.06 (see Table 5.2). While this small change is not expected to elicit a large difference in the

probability of gastrointestinal diseases between the two cases, it certainly does make it more (rather than

less) probable compared to the control. However, it also causes the chain to be initialized at the weak

hypothesis of stomach cancer by prompting it, resulting in the generation of more alternative hypotheses

outside the focal space and a lower probability judgment than in the first case (Figure 5.3).

Another such bias is the Dud alternative effect: presenting low probability (or “dud”) alternate hy-

potheses increases the perceived probability of the focal space of hypotheses482. This can be viewed as the

superadditivity effect in the complement (alternate) hypothesis space. The queries being contrasted here

are initialized in the space complementary to the focal space—i.e., the space of alternatives. Initialization

at a low probability alternative when it is explicitly prompted in the question results in a superadditive
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judgment (i.e., a lower probability judgment) of the complement space. This lower probability estimate

for the complement space entails a higher probability estimate for the focal space. The assumption here is

that the same chain is used to gauge the probability of both binary complements, by grouping the gener-

ated hypotheses into being either inside or outside the focal space and calculating the net- probability of

each group. The framing simply alters the initialization of the chain. This assumption ensures that prob-

ability judgments over complementary spaces add up to one, in accordance with behavioral experiments

that demonstrate binary complementarity in human judgments460.

To elucidate this effect in our medical diagnosis model, we use the following queries:

• Control: Given the symptoms fever, nausea and fatigue, what is the probability that the patient has
a respiratory disease (as opposed to the symptoms being caused by the presence of a gastrointestinal
disease)?

• Dud alternative: Given the symptoms fever, nausea and fatigue, what is the probability that the
patient has a respiratory disease (as opposed to the symptoms being caused by the presence of gas-
troenteritis, stomach cancer, or any other gastrointestinal disease)?

We see in Figure 5.4 that the model predicts that the scenario with dud alternatives produces higher

probability judgments than the control. Findings inWindschitl &Chambers 482 also suggest that themag-

nitude of this effect decreases with the amount of processing time given to participants. The model also

replicates this phenomenon, if we assume that more time means more samples, and that the time points

queried are before the resource-rational limit on the number of samples is reached.

Our model currently only captures cases of binary complementarity where it’s obvious to participants

that complementarity holds. If this complementarity is obvious, then they can use the same chain, and

if the complementarity isn’t obvious, then they use a new chain. If this new chain is not suggestively un-

packed, approximate binary complementarity should still hold. It is an interesting challenge to understand

when humans might re-use the same chain and when they might use a new chain, and when they might

use some intermediate between the two. This is part of our ongoing research.
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Figure 5.4: Dud alternative effect. MCMC estimates were made for the following queries: Given the symptoms fever, nausea
and fatigue, (a) Control: What is the probability that the patient has a respiratory disease (as opposed to the symptoms being
caused by the presence of a gastrointestinal disease)?, (b) With dud alternatives: What is the probability that the patient has
a respiratory disease (as opposed to the symptoms being caused by the presence of gastroenteritis, stomach cancer, or any
other gastrointestinal disease)? The estimate from the control chain is higher than from the chain for which dud alternatives
are presented. The difference between these estimates is represented by the red line and the effect diminishes as the number
of samples increases
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Figure 5.5: Self-generation effect. MCMC estimates for the following query: Given the symptoms fever and fatigue, (a) Self-
generated: What are the two most likely respiratory diseases to have caused these symptoms? Estimate the probability that
these symptoms are caused by either of these two diseases. (b) Other-generated: What is the probability that these symptoms
were caused by the presence of a cold or respiratory flu (two most likely respiratory diseases to have caused these symptoms
returned by the first chain)? The estimate from the other-generated chain is higher than from the self-generated chain. The
difference between these estimates is represented by the red line and the effect decreases as the number of samples increases

5.3.4 Self-generation of hypotheses

In this section, we focus on the self-generation effect: the probability judgment of a set of hypothesis that

are generated and reported by a subject themselves is lower than when the same set of reported hypotheses

is presented to a new subject 247,252. Ourmodel provides the following explanation: Self-reported hypothe-

ses generated by a chain are the modes it discovers after having explored the space and having generated

several alternate hypotheses. However, in a situation where these high probability hypotheses are directly

presented, the chain starts at the mode and is likely to get stuck—i.e., not accept any of the proposals and

thus not generate them at all. This, in the small sample limit, results in the generation of fewer alternate

hypotheses. As in the previous section, fewer alternate hypotheses lead to a higher probability judgment.

We simulate an experiment analogous to the experiments in Koehler 247 by querying the model as fol-

lows: Given the symptoms fever and fatigue, what are the twomost likely respiratory disease to have caused
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these symptoms? To simulate the answer to this query, a randomly initialized “self-generated” chain is run

and the 2 hypotheses over which this chain returns the highest probabilities are returned. In this case, these

are a cold and respiratory flu. The net probability estimate of the generated hypotheses cold or respiratory

flu is tracked over time for the chain that generated them. A separate “other-generated” chain is queried as

follows: Given the symptoms fever and fatigue, What is the probability that these symptoms were caused

by the presence of a cold or respiratory flu? Thus, this chain is initialized at these high probability hypothe-

ses of cold and respiratory flu. The difference between the probability estimates from these two chains is

shown in Figure 5.5.

While this effect has previously been understood in terms of the generation of alternatives247, a rational

process model specifying a mechanism for this differential generation of alternatives is novel. Our expla-

nation of this effect is also contingent upon a property unique to MCMC – the link between generation

and evaluation. In both self-generated and other-generated scenarios, the same hypothesis was generated,

but evaluated differently depending on howmany alternatives were generated. AnMCMC chain can “get

stuck” at a high probability hypothesis because most new proposals are rejected, resulting in fewer gener-

ated alternatives.

5.3.5 Anchoring and adjustment

In a classic experiment, Tversky & Kahneman 457 had participants observe a roulette wheel that was pre-

determined to stop on either 10 or 65. Participants subsequently had to guess the percentage of African

countries in theUnitedNations. Participants who saw thewheel stopping on 10 guessed lower values than

participants whose wheel stopped at 65. This and other findings led Tversky & Kahneman 457 to hypoth-

esize the “anchoring and adjustment” heuristic, according to which people anchor on a salient reference

(even if it is irrelevant) and incrementally adjust away from the anchor towards the correct answer.

Lieder et al. 275 showed that the anchoring and adjustment heuristic is a basic consequence of MCMC

algorithms, due to the inherent autocorrelation of samples. Consistentwith this account, ourmodel posits

that anchors, even when irrelevant, can serve to initialize the Markov chain. Locality guarantees that the

chain will adjust incrementally away from the initial state, though anchoring will occur more generally
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Figure 5.6: Anchoring and adjustment. The y axis represents the difference in the probabilities of respiratory flu and stomach
flu given the symptoms fever and fatigue as returned by two different chains that are initialized differently. The chains are
initialized in the two different clusters, at hypotheses other than the focal hypotheses of respiratory or stomach flu. Before
reaching convergence, the chain initialized in cluster 1 of respiratory diseases places higher probability on respiratory flu than
the chain initialized in cluster 2 of gastrointestinal diseases. The net difference between the two chains diminishes as the
number of samples increases.

as long as the rejection probability is non-zero. An MCMC algorithm with global proposals will capture

anchoring to some extent because of its non-zero rejection probability and resulting auto-correlation of

samples. However, without locality, estimates would not adjust incrementally away from the initial state.

In other words, any MCMC algorithm will over-represent the initial anchoring hypothesis in the small

sample limit, but only anMCMC algorithmwith local proposals will also over-represent other hypotheses

close to the initial anchoring hypothesis.

We illustrate this effect in Figure 5.6 using MCMC with local proposals on the disease-symptom net-

work. The space of diseases in our example is clustered into respiratory and gastrointestinal diseases. The

given symptoms are fever and fatigue. Chains initialized in different clusters show an initial within-cluster

bias (i.e. not just a bias towards the initial anchoring hypothesis, but also to other hypotheses in its cluster),

and this bias diminishes with the number of samples.
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5.3.6 The crowd within

Error in estimates of numerical quantities decrease when the estimates are averaged across individuals, a

phenomenon known as the wisdom of crowds443. This is expected if the error in the estimate of one indi-

vidual is statistically independent from the error of the others, such that averaging removes the noise. Any

unbiased stochastic sampling algorithm replicates this result, because taking more samples gets one closer

to the asymptotic regime, where the estimates are exact and the error tends to zero.

This error analysiswas extendedbyVul&Pashler 469 to the effects of averaging acrossmultiple estimates

from a single individual. They found that averaging estimates reduced error—a phenomenon they named

the crowd within. However, they also found that this error reduction was less compared to the reduction

obtained by averaging across individuals. One explanation for this observation is that the error in the

estimates given by the same individual are not entirely independent. We propose that the dependence

betweenmultiple estimates arises from an autocorrelated stochastic sampling algorithm likeMCMC.This

effect is illustrated in Figure 5.7. Wepresented the following query to themodel: Given symptoms are fever,

nausea and fatigue, what is the probability that these symptoms are caused by the presence of a respiratory

disease rather than a gastrointestinal disease? We ran several chains (Nc = 24) initialized randomly in the

space of all possible diseases, with each run generating the samenumber of samples (Ns = 200). Each chain

is initialized at the last sample of the previous chain*, for another Ns steps and a new set of Nc estimates

are obtained, corresponding to the second guesses of the Nc individuals. This process is continued until

we have 7 estimates from each of the Nc = 24 participants. The samples are then averaged either within

or across individuals (chains). We find results analogous to those in Vul & Pashler 469—the error of the

responses monotonically declines with the number of samples, and the error reduction is greater when

averaging across (compared to within) individuals.

OurMCMCmodel can replicate this effect because it generates auto-correlated samples. The last sample

from one estimate is where the chain for the next estimate is initialized. As the sampling process is auto-

*We could also induce correlation between consecutive estimates by continuing the chain—i.e., carrying over
the estimates from the first guess to the second one, instead of re-initializing. However, if we continue the chain, the
second estimate is made with more samples and will always have a lower error on average than the first one. Vul &
Pashler 469 find this to not be the case empirically.
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Figure 5.7: The crowd within. Errors in the MCMC estimates for the following query: Given the symptoms nausea and
shortness of breath, what is the probability that these were caused by the presence of a respiratory disease? The estimates
are averaged either over samples from the same individual (blue) or over samples from different individuals (red)

correlated, subsequent samples in the second chain (in the small sample size limit) are correlated to its initial

sample. Similarly, earlier samples from the first chain are correlated to its last sample. Because the samples

from the two chains are correlated via the common sample, the probability estimates they generated are

correlated aswell. This auto-correlation exists irrespective of proposal distributionbecause of the non-zero

rejection probability, but is strengthened by locality in the proposals because this increases correlation.

5.3.7 Summaryofsimulationresultsandcomparisonwithimportancesampling

To highlight the distinctive predictions of MCMC, it is useful to compare it with other sampling algo-

rithms that have been explored in the psychological literature. Importance sampling also uses a proposal

distributionQ(h), but unlikeMCMCit samplesmultiple hypotheses independently and inparallel. These

samples are then weighted to obtain an approximation of the posterior:

P̂N(h|d) =
1
N

N∑
n=1

I[hn = d]wn, (5.7)
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wherewn is an “importance weight” for sample n computed according to:

wn ∝
P(hn, d)
Q(hn)

. (5.8)

Intuitively, the importance weight corrects for the fact that the importance sampler draws samples from

the wrong distribution. Shi et al. 410 have shown how this algorithm can be used to simulate human per-

formance on a wide range of tasks. They also identified a correspondence between importance sampling

and exemplar models, which have been widely applied in psychology. In related work, Shi & Griffiths 409

demonstrated how importance sampling could be realized in a biologically plausible neural circuit see also 3.

Some of the effects we have replicated in this work could also be captured by an importance sampling

algorithm with limited samples. Thomas et al. 448 have proposed a model, HyGene, that is similar in

spirit to an importance sampler with limited samples, with a memory driven proposal distribution that

selects the hypotheses to be generated. HyGene explains subadditivity in terms of a failure to retrieve all

the relevant hypotheses from memory due to stochastic noise in the retrieval process and limited working

memory capacity.

The self-generation effect can to some extent be reproduced by importance sampling because prompt-

ing a hypothesis causes it to be sampled an extra time. So the probability of the focal space will be slightly

larger if hypotheses in it are explicitly prompted (other-generated and presented to the participant) than

if it they are generated without prompting (self-generated). However, Experiment 2 in Koehler 247 shows

that in a situation where all the alternatives are specified, prompting specific hypotheses (as in the other-

generated scenarios), does not result in a higher probability judgment than when these hypotheses are not

prompted (as in the self-generated scenarios). The MCMC algorithm captures this finding because in a

small hypothesis space, theMarkov chain will visit all the hypotheses with the right frequency irrespective

of initialization. By contrast, the importance sampler predicts a higher probability for other-generated

hypotheses, contrary to the empirical finding.

This brings us to a key difference between importance sampling and MCMC: Importance sampling

generates all hypotheses in parallel—the generation of new hypotheses has no dependence on hypotheses

that have already been generated. Without this dependence, there is no interaction between the genera-
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tion and evaluation processes. MCMC captures this dependence by sequentially generating hypotheses.

Our model’s explanation of the self-generation effect, superadditivity, the weak evidence effect and the

dud alternative effect rests on this dependence. The Markov chain can get stuck (at least temporarily) by

rejecting proposals, thus generating fewer alternatives. If, on the other hand, the current hypothesis has

low probability, more alternatives are generated and the probability estimate of the focal space is reduced.

The importance sampler does not produce these effects, because its mechanism for generating new hy-

potheses is independent of the probability of the current one. If anything, prompting a hypothesis within

the focal space, no matter how atypical, causes it to be sampled, increasing the importance sampler’s esti-

mate for the probability of the focal space, contradicting superadditivity.

Another key difference betweenMCMC and importance sampling is thatMCMC generates correlated

samples, whereas consecutive samples from an importance sampler are totally independent. This prevents

the importance sampler from reproducing the effects in Table 6.1 that rely on correlated sampling, such as

the anchoring effect and the crowd within.

It is also valuable to contrastMCMCwith anchoring and adjustment schemes that involve incremental

changes to a numerical estimate in the direction of the target value. AlthoughMCMCproduces autocorre-

lation of samples, it does not require changes to be incremental; MCMC allows the proposal distribution

to be non-local. In fact, substantial evidence suggests that some of these changes can be quite dramatic, as

in perceptual multistability 134 and insight problem-solving435.

5.4 Overview of experiments

We now turn to novel experimental tests of our theory. As discussed in the Introduction, the primary

impetus for considering rational process models based on approximate inference is that inference in many

real-world problems is computationally intractable. However, studying complex inference problems ex-

perimentally is challenging because it becomes harder to control participants’ knowledge about the gen-

erative model. In the case of medical diagnosis, we can rely on the extensive training of clinicians, but it

is unclear whether conclusions from these studies are generalizable to non-expert populations. Thus, for

our experiments we sought a more naturalistic inference problem.
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Onedomain inwhichhumanshave rich, quantifiable knowledge is sceneperception andunderstanding.

Extensive research suggests that the visual system encodes information about natural scene statistics 16,420.

Although these low-level scene statistics like the distribution of oriented edges are not consciously accessi-

ble, statistics at the level of objects, for example object co-occurrence statistics in natural scenes studied in

Greene 174 , can be used to inform a generative model that can act as a proxy for one aspect of human scene

understanding. We can then leverage suchmodels to test theories of hypothesis generation in this domain.

Specifically, Greene 174 provides a database of natural scenes with hand-labeled objects. We fit the la-

tent Dirichlet allocation (LDA) model 36 to this dataset, allowing us to capture the distribution of co-

occurrences of different objects in terms of latent “topics” (distributions over objects). Each scene is mod-

eled as a probabilistic mixture of topics. The LDA model captures the fact that microwaves are likely to

co-occur with toasters, and cars are likely to co-occur with mailboxes. The marginal distribution of ob-

jects provides a natural empirical prior over objects. We do not fit any free parameters to the dataset; all

hyperparameters are set to the values described in Blei et al. 36 .

For our purposes, the important point is that we can use our model to compute conditional probabili-

ties over hidden objects in a scene, given a set of observed objects. Formally, let h ∈ H denote a hypothesis

about k hidden objects in a scene, among all such possible hypothesesH. Given a set of observed objects d,

the inference problem is to compute the conditional probability P(h ∈ H|d) that h is in some setH ⊂ H

(e.g., hypotheses inwhich at least one of the hiddenobjects is an electrical appliance, or hypotheses inwhich

the name of at least one of the hidden objects starts with a particular letter). This conditional probability

can be approximated using MCMC in the hypothesis space.

In our experiments, we present participants with a set of observed objects, and ask them to estimate

the probability that the hidden objects belong to some subset of possible objects. By manipulating the

query, we attempt to alter the initialization of participants’ mental sampling algorithm, allowing us to

quantitatively test some of the predictions of our model.

Due to the relative complexity of this domain (compared to the simplified fictitious disease-symptom

domainwe have used so far for illustrative purposes), we refrain frommaking claims about the structure of

proposal locality here and only test the predictions of ourmodel that are immune to the choice of proposal
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distribution. Specifically, we focus on subadditivity and superadditivity.

5.5 Experiment 1: Manipulating question framing

Our first prediction is the occurrence of both superadditivity and subadditivity in the same domain. The

key factor is the typicality of the examples prompted by the unpacked query. We predict that if the query

prompts typical examples from the focal space, probability judgments of that focal spacewill be higher than

in the packed condition where no hypotheses are prompted (subadditivity). By contrast, if the question

prompts atypical examples from the focal space, probability judgments of that focal space will be lower

than in the packed condition where no hypotheses are prompted (superadditivity).

Using LDA as the probabilistic model, the data consist of visible objects in a scene, and the hypotheses

are hidden objects. The focal space of hypotheses is given by a query such as all objects starting with ‘c’.

The focal space was unpacked into several either highly probable (typical) examples or highly improbable

(atypical) examples, as well as a catch-all hypothesis. In the packed condition, the focal space is queried

without any unpacked examples.

Participants

59 participants (26 females, mean age=35.76, SD=11.63) were recruited via Amazon’sMechanical Turk and

received $1 for their participation plus a performance-dependent bonus.

Materials and procedure

Participants were asked to imagine playing a game with a friend in which the friend specifies an object in a

scene that they cannot see themselves. The task is to estimate the probability of certain sets of other objects

in the same scene. For example, the friend could specify “pillow”. In the unpacked condition, participants

were then asked to estimate the conditional probability of a focal space presented as a few examples and a

catch-all hypothesis (e.g., “an armchair, an apple, an alarm clock or any other object starting with an A”).

In the packed condition, the query did not contain any examples.
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Table 5.3: Queries in Experiment 1. The letter determines the focal space (e.g., all objects beginning with A), conditioned on
the cue object. Typical and atypical unpackings are shown for each focal space.

Cue object Letter Unpacked-typical Unpacked-atypical

Pillow A armchair, alarm clock, apple arch, airplane, artichokes
Rug B book, bouquet, bed bird, buffalo, bicycle
Table C chair, computer, curtain cannon, cow, canoe
Telephone D display case, dresser, desk drinking fountain, dryer, dome
Computer E envelope,electrical outlet, end

table
eggplant, electric mixer, elevator
door

Armchair F fireplace, filing cabinet, fan fire hydrant, fountain, fish tank
Stove L light, lemon, ladle leavers, ladder, lichen
Chair P painting, plant, printer porch, pie, platform
Bed R rug, remote control, radio railroad, recycling bins, rolling pin
Kettle S stove, shelves, soap suitcase, shoe, scanner
Sink T table, towel, toilet trumpet, toll gate, trunk
Lamp W window, wardrobe, wine rack wheelbarrow, water fountain,

windmill

Each participant responded to one query for each of 9 different scenarios shown in Table 6.2, with 3

unpacked-atypical, 3 unpacked-typical, and 3 packed questions. We randomized the order of the scenarios

as well as the assignment of scenarios to condition for each participant.

On every trial, participants first saw the cue object, followed by a hypothesis (either packed, unpacked-

typical or unpacked-atypical). Participants had 20 seconds to estimate the probability of the hypothesis on

a scale from0 (not at all likely) to 100 (certain). For every timely response per trial they gained an additional

reward of $0.1. A screenshot of the experiment is shown in Figure 6.4.

Model fitting

Our model has two free parameters: the number of hidden objects in the scene (k) and the number of

samples (N). These parameters were fit to the behavioral data from both Experiment 1 and Experiment 2

combined, using a coarse grid search to optimize the mean-squared error between the mean experimental

probability estimates and the probability estimates from the model. This estimate was used to generate
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Figure 5.8: Experimental setup. Participants were asked to estimate the conditional probability using a slider bar within a
20-second time limit.

confidence intervals. The value of k that best fit the data was k = 6 with negligible uncertainty, and

the number of samples N = 230 with a 95% confidence interval [191, 269]. This value of k is in the

same ballpark as values found for average number of uniquely labeled objects in natural scenes from data

collected in Greene 174 . This value for N as the number of samples is higher than numbers found in some

previous work like Vul et al. 467 etc, but it is important to note that each unique hypothesis can appear

several times in the sample set. So even if the number of samples is larger than in previous studies, the

number of unique hypotheses is comparable.

The details of the proposal distribution could also influence the individual and relative magnitudes

of the observed subadditivity and superadditivity effects, and perhaps different parameters for N and k.

Instead of making strong assumptions about locality in this particular hypothesis space, we use a uniform

proposal distribution.

82



Results and discussion

We compared the mean probability judgments for each condition (Figure 5.9). Consistent with our hy-

pothesis, we found subadditivity in the unpacked-typical condition, with significantly higher probabil-

ity estimates compared to the control condition [t(58) = 4.53, p < 0.01], and superadditivity in the

unpacked-atypical condition, with significantly lower probability estimates compared to the control con-

dition [t(58) = −4.97, p < 0.01]. This pattern of results was captured by our MCMC model.
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Figure 5.9: Experiment 1 results. Mean probability estimates for each condition. Error bars represent the 95% confidence
interval of the mean. Red dots show estimates from the MCMC model with 230 samples, assuming 6 hidden objects in the
scene.

Our results confirm the prediction that subadditivity and superadditivity will occur within the same

paradigm, depending on the typicality of unpacking. A related result was reported by Sloman et al. 425 ,

who found subadditivity only when the definition of the focal space was fuzzy and typical unpacking may

have led to the consideration of a larger focal space. We consider this study in more detail in the General

Discussion.
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5.6 Experiment 2: Manipulating the cue

In Experiment 1, we demonstrated that the typicality of unpacked examples has a powerful effect on biases

in probability estimation. In Experiment 2, we provide converging evidence by showing that different

biases can be induced for the same unpacked examples by changing the cue object.

Typicality depends on an interaction between the cue and the examples: in the presence of a road, a

crosswalk is typical and a coffee-maker is atypical, but the opposite is true in the presence of a sink. Our

model predicts that subadditivity will occur when unpacked examples are typical for a given cue object,

whereas superadditivity will occur when the same examples are atypical for a different cue object.

Participants

180 participants (84 females, mean age= 34.25, SD=11.16) were recruited via Amazon’s Mechanical Turk

web service and received $0.5 for their participation plus a performance-dependent bonus.

Materials and procedure

The experimental procedure was identical to Experiment 1, except for the choice of scenarios (Table 6.3).

Each participant responded to one unpacked-typical, one unpacked-atypical and one packed scenario in

random order.

Table 5.4: Queries in Experiment 2. The letter determines the focal space (e.g., all objects beginning with A), conditioned on
the cue object. Conditioned on cue object 1, unpacking 1 is predicted to cause subadditivity and unpacking 2 is predicted to
cause superadditivity. These predictions reverse for cue object 2.

Cue object 1 Cue object 2 Letter Unpacking 1 Unpacking 2

Pillow Faucet B bed skirt, bedspread bucket, bread
Road Sink C cabin, crosswalk cup, coffee maker
Cabinet Road T toothpaste, tray terrace, tunnel
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Figure 5.10: Experiment 2 results. Mean probability estimates for each condition. Error bars represent the 95% confidence
interval of the mean. Red dots show estimates from the MCMC model with 230 samples, assuming 6 hidden objects in the
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for cue object 1.

85



Results and discussion

As shown in Figure 5.10, we observed a superadditivity effect: probability estimates were significantly

higher in thepacked condition compared to the atypical unpacking forboth cueobject 1 [t(165) = 3.31, p <

0.01] and cue object 2 [t(162) = 4.31, p < 0.01]. We did not observe a subadditivity effect for either cue

object 1 [t(171) = 0.73, p > 0.05] or cue object 2 [t(168) = 0.08, p > 0.05]. Importantly, we found a

significant interaction between the cue-object and the unpacking of the objects [F(498, 2) = 12.69, p <

0.001]. In particular, when conditioning on cue object 2, using “Unpacking 1” (see Table 6.3) leads to

significantly lower estimates than using “Unpacking 2” [t(251) = 2.52, p < 0.01]. Additionally, when

conditioning on cue object 1, using “Unpacking 2” produces significantly lower estimates than using “Un-

packing 1”; [t(165) = −3.31, p < 0.001]. These results show that typicality of the unpackings and, by

proxy the sub- and super-additive effects, crucially depend on the conditioned cue object.

Our fitted model matches the experimental data well (r = 0.96, p < 0.001), only slightly underesti-

mating the superadditive effect with cue object 2 and unpacking 1. We can conclude from the fact that this

cue-dependent swap can be even partially carried out—for example, the superadditivity effect certainly

does get swapped—indicates that these effects are not modulated solely by the prior typicality or inherent

availability of the unpacked examples. The same unpacking that induces superadditivity in the presence of

one cue object, does not induce it in the presence of the second cue object. Furthermore, a new unpacking

can be chosen such that it induces superadditivity in the presence of the second cue object but not in the

presence of the first. These results support a sampling process that is modulated by the cue objects, i.e. the

observed data.

5.7 Experiment 3: The effect of time pressure

A key prediction of our model is that the strength of subadditivity and superadditivity will decrease with

the number of sampled hypotheses, as the chain approaches its stationary distribution. To test this predic-

tion, we repeated Experiment 1, but reduced the time limit and incentivized participants to respond more

quickly. We predicted that these changes would lead to stronger subadditivity and superadditivity effects.
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Participants

62 participants (34 females, mean age= 25.65, SD=12.36)were recruited viaAmazon’sMechanical Turkweb

service and received $0.5 for their participation plus a performance-dependent bonus.

Materials and procedure

Materialswere the same as inExperiment 1. However, in this experimentparticipants had less time available

per trial (5 seconds) and were asked to respond as quickly as possible. Participants were paid a baseline

amount for their participation of $0.5. Additionally, theywere incentivized to respondquickly: they could

gainmoremoney the faster they responded on each trial (up to $0.1 per trial) and gained an additional $0.1

for every on time response per trial overall.

Results and Discussion

The mean estimates for the different conditions are shown in Figure 5.11. Replicating the results of Ex-

periment 1, the estimates for the unpacked-atypical condition were significantly lower than for the packed

condition [t(57) = −4.8183, p < 0.01], and the estimates for the unpacked-typical condition were sig-

nificantly higher than for the packed condition [t(57) = 4.76, p < 0.01]. Our hypothesis generation

model fits the data well with parameter valuesK = 3with negligible uncertainty andN = 170with 95%

confidence interval [94, 246]. We see that the best fit number of samples is substantially lower than that

found in Experiment 1 (N = 230, with 95% confidence interval [191, 269]). The number of hidden ob-

jects K is also lower. These parameter estimates are consistent with the idea that time pressure results in

fewer generated samples and fewer objects under consideration.

Next, we performed a median split based on the overall reaction times and thereby classified trials into

slow and fast trials. The slow and fast trials were separately fit using the same value of K from the overall

responses and adjusting N. We see that the data from the fast trials are better fit with a lowerN (N = 150,

with 95% confidence interval [98, 202]) than the slow trials (N = 190, with 95% confidence interval

[125, 255]). The estimates for the slow trials have a high overlap with the estimates from Experiment 1

(N = 230, with 95% confidence interval [191, 269]). However, the intervals for the fast response and
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Figure 5.11: Experiment 3 results. Mean probability estimates for each condition. Error bars represent the 95% confidence
interval of the mean. Red dots show estimates from the MCMC model with 170 samples, assuming 3 hidden objects in the
scene. Blue squares show means estimates of Experiment 1.

the one from Experiment 1 have a small overlap of ∼ 10 steps. The results are shown in Figure 5.12. We

then performed an ANOVA, regressing the median time (fast or slow response), condition (packed, typ-

ically unpacked and atypically unpacked hypothesis) onto participants’ probability estimates, where re-

sponses were nested within participants. Condition was a significant predictor of participants’ responses

(χ2(1) = 157.8, p < 0.001). The time variable alone was not a significant predictor of participants’

responses (χ2(1) = 3.9, p = 0.05). This is expected since the subadditivity and superadditivity effects

go in opposite directions. The interaction between time and condition was significant (χ(1) = 37.03,

p < 0.01) indicating that the time variable influences the estimates depending on condition. Further as-

sessing this difference between the interactions again using a nested ANOVA showed that faster responses

produced greater subadditivity effect as compared to slow responses (t(248) = −2.1602, p < 0.05). The

difference in the superadditivity effect however was not significant (t(213) = 0.78, p = 0.4). Comparing

the sub- and superadditivity effects of Experiment 3 to the effects of Experiment 1, we found that they were

relatively similar overall (t(453) = −1.353,p > 0.1). However, comparing only the fast responses from

88



Experiment 3 to the results of Experiment 1, we found an increased subadditivity effect (t(102) = −2.46,

p < 0.05) but a similar superadditivity effect (t(104) = −0.71, p = 0.48). This is in agreement with the

model fits.
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Figure 5.12: Experiment 3 results: response time analysis. Mean probability estimates for each condition divided into fast
and slow trials based on a median split of the response times. Error bars represent the 95% confidence interval of the mean.
Dots represent the model fits with model parameters K = 3, and N = 150 for the fast trials and N = 190 for slow trials.

5.8 Experiment 4: The effect of cognitive load

In our final experiment, we explored the possibility that cognitive load will reduce the number of samples,

under the assumption that load consumes resources necessary for hypothesis generation. Therefore, we

repeated Experiment 1, but put participants under cognitive load while responding to the packed or un-

packed queries. We predicted that subadditivity and superadditivity effects should become stronger under

cognitive load. In addition, the effects should again depend on participants’ response time, such that faster

trials are expected to produce larger effects.

5.8.1 Participants

69 participants (28 females, mean age= 32.17, SD=7.64) were recruited via Amazon’sMechanical Turkweb

service and received $0.5 for their participation plus a bonus of $0.1 for every question they answered on
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time and $0.1 for every time they remembered whether or not an item shown after the question had a

appeared within a sequence before the target question correctly.

5.8.2 Materials and Procedure

Materials were the same as in Experiment 1 and 3. Additionally, participants were put under cognitive load

while performing the probability estimation task. On each trial, participants again first saw the cue object.

Once they clicked “Next”, a sequence of three random digits appeared, each remaining on the screen for 1

second before disappearing after which the next digit appeared. Participants were asked to remember these

digits. Immediately afterwards, participants were asked to judge the probability of a hypothesis that could

be either packed or unpacked (same as in Experiment 1). They were then shown another digit and had to

indicate whether or not that digit had occurred within the sequence they had just been shown.

●

●

●

0

25

50

75

100

Packed Unpacked−
 Typical

Unpacked−
 Atypical

Condition

M
ea

n 
E

st
im

at
es

Experiment 4

Figure 5.13: Experiment 4 results. Mean probability estimates for each condition when participants are put under cognitive
load. Error bars represent the 95% confidence interval of the mean. Red dots show estimates from the MCMC model with 110
samples, assuming 2 hidden objects in the scene. Blue squares show means estimates of Experiment 1.
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5.8.3 Results and Discussion

The mean probability estimates for each condition are shown in Figure 5.13. Again replicating Experi-

ment 1, the estimates for the unpacked-atypical condition were significantly lower than for the packed

condition [t(68) = −7.31, p < 0.01], and the estimates for the unpacked-typical condition were sig-

nificantly higher than for the packed condition [t(68) = 4.18, p < 0.01]. The model fits the data well

with parameter values K = 2 and N = 110 with 95% confidence interval of [74, 146]. We see again

that the best fit number of samples is substantially lower than that found in Experiment 1 (N = 230,

with 95% confidence interval [191, 269]), with no overlap in the confidence intervals. The number of

hidden objects K is also lower. Additionally, the cognitive load manipulation increased the effect of su-

peradditivity (packed-atypical condition) as compared to Experiment 1 [t(58) = 10.38, p < 0.001], but

was not significantly different from Experiment 1 for the subadditivity effect (packed-typical condition)

[t(58) = −1.9, p > 0.05].

5.9 General Discussion

We have presented a rational process model of inference in complex hypothesis spaces. The main idea

is to recast hypothesis generation as a Markov chain stochastically traversing the hypothesis space, such

that hypotheses are visited with a long-run frequency proportional to their probability. Our simulations

demonstrated that this model reproduces many observed biases in human hypothesis generation. Finally,

we confirmed in four experiments the model’s prediction that subadditivity and superadditivity depend

critically on the typicality of unpacked examples and that the superadditivity effect increases under time

pressure and cognitive load.

Our work extends a line of research on using rational process models to understand cognitive biases.

Most prominently, Thomas et al. 448 have attempted in their HyGene model to explain a wide range of

hypothesis generation phenomena by assuming that Bayesian inference operates over a small subset of

hypotheses drawn from memory. We follow a similar line of reasoning, but depart in the assumption

that hypotheses may be generated de novo through stochastic exploration of the hypothesis space. This as-
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sumption is important for understanding howhumans can generate hypotheses in complex combinatorial

spaces where it is impossible to store all relevant hypotheses in memory.

Prior studies suggest that—when averaged over long time periods or across individuals—probability

estimates converge roughly to the Bayesian ideal467. Like other models based on Monte Carlo methods

e.g. Gershman et al. 147 , Lieder et al. 277,275 , Shi et al. 410 , our model predicts exact Bayesian inference in

the limit of large sample sizes. However, cognitively bounded agents are expected to be computationally

rational 144: sampling takes time and effort, and hence the optimal sampling strategy will tend to generate

relatively few hypotheses467.

Our model recreates several cognitive biases exhibited by humans: subadditivity, superadditivity, an-

choring and adjustment, weaker confidence in self-generated hypotheses, the crowd within, and the dud

alternative and weak evidence effects. While some of these biases have been accounted for by other mod-

els, ours is the first unified rational process account. Table 5.5 provides a systematic comparison of which

phenomena are accounted for by different models.

Our simulation results rest on two key features of the model, that are not captured by parallel sam-

pling algorithms. First, our model posits an interplay between generation and evaluation of hypotheses:

when a low probability hypothesis has been generated, the sampler is more likely to accept new proposals

compared to when a high probability hypothesis has been generated. This property of MCMC allows us

to understand superadditivity and related effects (such as the dud alternative and weak evidence effects),

where unpacking a query into low probability examples causes a reduction in the probability estimate for

the focal space. This feature also explains why participants give lower probability estimates to hypotheses

that are self-generated compared to those generated by others and presented to them. A shortcoming of

previous models based on importance sampling410 or cued recall448 is that the generation and the evalua-

tion processes are largely decoupled; the probabilities of the hypotheses already in the cache of generated

hypotheses do not affect whether or not new hypotheses are generated.

The second key property of our model is the autocorrelation of hypotheses in the Markov chain. This

autocorrelation arises from two sources: the non-zero rejection rate (which ensures that the chain some-

times stays at its current hypothesis for multiple time steps) and the locality of the proposal distribution
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(which ensures that proposed hypotheses are in the vicinity of the previously generated hypothesis). Pre-

vious models based on importance sampling or cued recall generate new candidate hypotheses indepen-

dently of the hypotheses that have already been generated (i.e., the previously generated hypotheses have

no impact on future hypotheses). Lieder et al. 275 argued that autocorrelation and locality of proposals

in MCMC models can account for the anchoring and adjustment phenomena. They analyzed a one-

dimensional continuous hypothesis space for numerical estimation, and we generalized this idea to combi-

natorial spaces. More broadly, several findings in the literature suggest hypothesis autocorrelation 147,469,38.

For example, the “crowd within” phenomenon469, which we also simulate, demonstrates that errors in

numerical guesses are correlated in time, and this error is reduced if the guesses are spread out.

MCMC models with global proposal distributions will show much weaker autocorrelation compared

to those with local proposal distributions, because any autocorrelation will depend entirely on rejection

of proposals. Since efficient samplers have relatively low rejection rates 376, there is reason to believe that

human probability estimation makes uses of local proposal distributions. Evidence for locality has been

found in domains analogous to that of hypothesis generation 1,428, further suggesting that humans use local

proposal distributions. We discuss in Chapters 3 and 7, how variational approximations can be leveraged

to provide these adaptive proposal distributions.

Table 5.5: Comparison of stochastic sampling algorithms

Effect Stochastic Sampling Variants
Importance
Sampling

Global proposal
MCMC

Local proposal
MCMC

Subadditivity ✓ ✓ ✓
Superadditivity ✓ ✓

Weak Evidence effect ✓ ✓
Dud Alternative effect ✓ ✓
Self-generation effect ?* ✓ ✓

Crowd within ✓ ✓
Anchoring & adjustment ✓

*While an importance sampler does reproduce the dud alternative effect, we have elaborated in the section com-
paring ourMCMCmodel to importance sampling how its explanation does not extend to follow-up studies on this
effect 247.
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Figure 5.14: The effect size of subadditivity and superadditivity (calculated as the absolute difference between unpacked
judgments and packed judgments, averaged over 200 chains) decays with increase in the number of samples taken. We plot
this for K = 3 but this structure is maintained at all K. This plot shows that superadditivity decays faster than subadditivity
with increase in the number of samples, and that subadditivity decays to close to zero with a smaller number of samples.

Previous work demonstrating the effect of superadditivity425 did not find subadditivity except in situ-

ations where the search was over an ill-defined fuzzy category, such that unpacked typical examples lead

participants to consider a larger hypothesis space than entailed by the packed query. However, this effect

was driven by a single item: Guns that you buy at a hardware storewith staple gun as the unpacked typical

example. Excluding this item, typical unpackings were not subadditive. Our experiments demonstrated

that subadditivity can be obtained in well-defined (non-fuzzy) domains like “words starting with the let-

ter A”, and where typical unpackings do not extend the hypothesis space. A possible explanation for this

discrepancy is that, unlike the studies in Sloman et al. 425 , we impose a response deadline on participants.

The size of the subadditivity and superadditivity effects decay with the number of hypothesis sampled.

Subadditivity decays to almost zero with fewer samples than superadditivity as seen for the scene statistics

model in Figure 5.14. The time pressure in Experiment 1, by restricting the number of samples, may have

rendered subadditivity observable, whereas the superadditivity effect is observable in both. Time pressure

in Experiment 3 and cognitive load in Experiment 4 strengthened some of the effects, but did not consis-

94



tently strengthen both effects. Thus, more experimental work is needed to understand the role of time

pressure and cognitive load.

Our results cannot be explained by simpler heuristics like anchoring and adjustment. Although an-

choring to a low probability hypothesis can account for superadditivity (probability estimates are adjusted

upwards), anchoring to a high probability example does not explain subadditivity, since the high probabil-

ity hypothesis still has lower probability than the total probability of the focal space (e.g., the probability

of “chair” is lower than the probability of seeing any object starting with the letter “c”). Thus, adjust-

ment away from the low probability hypothesis towards the normatively correct probability cannot lead

to a probability estimate higher than the answer to the packed query (where presumably no anchoring

occurs).

Other effects like the conservatism bias could also potentially be captured by variants of our model.

Conservatism bias has previously been modeled using noisy retrieval of memories 89,288 and can be repro-

duced in ourmodel in the same spirit by allowing noisy initialization. Due to the discreteness and resulting

low resolution of probability estimates allowed by a limited number of samples, even a few initial samples

from the focal space might over-represent its probability. When queried focal space has low probability,

the chain is initialized there and the few initial hypothesis generated from the focal space could give it higher

probability than the true posterior. When the queried focal space instead has high probability, it will be

under-represented (as predicted by conservatism) if there are more samples from its complement space. If

we introduce noise that causes the chain to initialize in the complement space with some small probability,

this will produce a higher probability for the complement space and thus a lower probability for the focal

space—i.e., conservatism. That said, the addition of noise might interfere with our explanations of other

probability judgment biases, so further modeling work is needed to explore this hypothesis.

5.9.1 Limitations and future extensions

Our model can be improved in several ways. First, we adopted relatively simple assumptions about ini-

tialization of the Markov chain. Recent work suggests that humans might use a fast, data-driven proposal

distribution learned fromprevious experience485,143. Wepresent a proposalmechanismof this sort inChap-
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ter 7. Thismechanismmight capture effects that hinge on the availability and representativeness heuristics.

Our current model fails to replicate these effects because it assumes that all hypotheses are equally likely to

be proposed, although they are accepted proportional to their probability. A proposal distribution that

preferentially proposes certain hypotheses might help build a link between our stochastic sampling-based

method and the literature on heuristics. We pursue this direction in greater detail in Chapter 7.

Our experiments and simulations only studied two domains (medical diagnosis and scene understand-

ing), but there exist many real-world domains that impose a severe computational burden onmental infer-

ence. It is important again to point out here that we expect our model to work only in domains in which

humans have natural intuitions for relative probabilities of hypotheses, without requiring explicit calcu-

lation. For example, it has been shown that humans are capable of simulating physical trajectories that

they have never directly observed, making fairly accurate inferences when predicting the motion of a pro-

jectile445, judging mass in collisions 393, and judging the balance of block towers 193. Furthermore, research

also suggests that humans sample noisy simulations of future trajectories429,194, but the precise sampling

mechanisms are currently unknown. The number of possible trajectories is exponentially large in this

domain, and thus approximate inference schemes like MCMC may come into play.

Returning to the puzzle we started with, why is it that humans are sometimes so successful at proba-

bilistic inference, and at other times so unsuccessful? We have identified one common source of inferential

fallacies: computational constraints on hypothesis generation, modulated by ecologically rational initial-

ization. Although this account can explain many departures from rationality, it remains puzzling why

humans should fail at tasks where the hypothesis space is clearly and exhaustively enumerated—for exam-

ple, in tasks that involve inferences about balls in urns see 352 for a review. A direct comparison between to

these to the domains we used in our studies is challenging because scene knowledge is complex and high-

dimensional (precisely why we were interested in this domain to begin with). In Chapter 7, we return to

tasks where the hypothesis space is small and explicitly provided, and discuss biases in these domains.
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6
Amortization in a sampling framework

Bayesianmodels of cognition assume that people computeprobability distributionsoverhypotheses. How-

ever, the required computations are frequently intractable or prohibitively expensive. In the previous chap-

ter, I discussed how these computations might be approximated by sampling algorithms under ecological

constraints. This model replicates several cognitive biases observed in human inferences. However, since

people often encounter many closely related distributions, selective reuse of computations (amortized in-

ference) is also ecologically rational: it leverages structure in the distribution of queries, to make efficient

use of the brain’s limited resources. In this chapter, I extend the sampling framework introduced in Chap-

ter 5 to include how amortization in such a model might take place.

I demonstrate in 3 experiments that humans adaptively and flexibly re-use computations in probabilistic

reasoning. When sequentially answering two related queries about natural scenes, participants’ responses

to the second query systematically depend on the structure of the first query. This influence is sensitive to

the content of the queries, only appearing when the queries are related. Using a cognitive load manipula-
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tion, I show evidence that people amortize summary statistics of previous inferences, rather than storing

the entire distribution. These findings support the view that the brain trades off accuracy and compu-

tational cost, and utilizes structure in sequences of queries observed, to make efficient use of its limited

cognitive resources to approximate probabilistic inference.

6.1 Amortized hypothesis generation

Many theories of probabilistic reasoning assume that human brains are equipped with a general-purpose

inference engine that can be used to answer arbitrary queries for awide variety of probabilisticmodels 184,331.

For example, given a joint distribution over objects in a scene, the inference engine can be queried with

arbitrary conditional distributions, such as:

• What is the probability of a microwave given that I’ve observed a sink?

• What is the probability of a toaster given that I’ve observed a sink and a microwave?

• What is the probability of a toaster and a microwave given that I’ve observed a sink?

The flexibility andpower of such a general-purpose inference engine trades off against its computational

efficiency: by treating each query distribution independently, an inference engine forgoes the opportunity

to reuse computations across queries, thus reducing time complexity (but possibly increasing space com-

plexity). Every time a distribution is queried, past computations are ignored and answers are produced

anew—the inference engine is memoryless, a property that makes it statistically accurate but inefficient in

environments with overlapping queries.

Continuing the scene inference example, answering the third query should be easily computable once

the first two queries have been computed. Mathematically, the answer can be expressed as:

P(toaster ∧microwave|sink) = P(toaster|sink,microwave)P(microwave|sink). (6.1)

Even though this is a trivial example, standard inference engines do not exploit these kinds of regularities

because they are memoryless—they have no access to traces of past computations.

98



An inference engine may gain efficiency by incurring some amount of bias due to reuse of past compu-

tations – a strategy we will refer to as amortized inference441,142. This idea is expanded upon in Chapter

4. For example, if the inference engine stores its answers to the “toaster” and “microwave” queries, then

it can efficiently compute the answer to the “toaster or microwave” query without rerunning inference

from scratch. More generally, the posterior can be approximated as a parametrized function, or recogni-

tion model, that maps data in a bottom-up fashion to a distribution over hypotheses, with the parameters

trained to minimize the divergence between the approximate and true posterior.* By sharing the same

recognition model across multiple queries, the recognition model can support rapid inference, but is sus-

ceptible to “interference” across different queries, a property that we explore below.

Oneway to construct a recognitionmodel is usingMonteCarlo sampling: the recognitionmodel can be

viewed as a kind of data-driven sampler whose parameters are optimized so that the samples resemble the

true posterior. In an amortized architecture, these parameters are shared across different inputs (i.e., data)

andhence the sampleswill be correlated, introducing a systematic bias. If the samplingprocess corresponds

to a Markov chain Monte Carlo algorithm (see below), this bias will disappear with a sufficiently large

number of samples, but since humans appear to take a relatively small number of samples73,468, we expect

this bias to be measurable.

Amortization has a long history in machine learning; the locus classicus is the Helmholtz machine 82,212,

which uses samples from the generative model to train a recognition model. More recent extensions and

applications of this approach 369,341,242,373 have ushered in a new era of scalable Bayesian computation in

machine learning. We propose that amortization is also employed by the brain (see Yildirim et al. 486 for a

relatedproposal), flexibly reusingpast inferences in order to efficiently answer newbut relatedqueries. The

key behavioral prediction of amortized inference is that people will show correlations in their judgments

across related queries.

We report 3 experiments that test this prediction using a variant of the probabilistic reasoning task pre-

*Formally, this is known as variational inference 228, where the divergence is typically the Kullback-Leibler diver-
gence between the approximate and true posterior. Although this divergence cannot be minimized directly (since
it requires knowledge of the true posterior), a bound (variational free energy) can be tractably optimized for some
classes of approximations.
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viously studied byDasgupta et al. 73 (Chapter ??). In this task, participants answer queries about objects in

scenes, much like in the examples given above. Crucially, the hypothesis space is combinatorial because par-

ticipants have to answer questions about sets of objects (e.g., “All objects starting with the letter S”). This

renders exact inference intractable: the hypothesis space cannot be efficiently enumerated. In our previ-

ous work73, we argued that people approximate inference in this domain using a form of Monte Carlo

sampling. Although this algorithm is asymptotically exact, only a small number of samples can be gen-

erated due to cognitive limitations, thereby revealing systematic cognitive biases such as anchoring and

adjustment, subadditivity, and superadditivity 277,275,468.

We show that the same algorithm can be generalized to reuse inferential computations in amanner con-

sistent with human behavior. First we describe how amortizationmight be used by themind. We consider

two crucial questions about how this might be implemented: what parts of previous calculations do peo-

ple reuse —all previous memories or summaries of the calculations— and when do they choose to reuse

their amortized calculations. Next we test these questions empirically. In Experiment 1, we demonstrate

that people do use amortization by showing that there is a lingering influence of one query on participants’

answers to a second, related query. In Experiment 2, we explore what is reused, and find that people use

summary statistics of their previously generated hypotheses, rather than the hypotheses themselves. Fi-

nally, in Experiment 3, we show that people are more likely to reuse previous computations when those

computations are most likely to be relevant: when a second cue is similar to a previously evaluated one.

6.2 Theoretical Framework

Before describing the experiments, weprovide anoverviewof our theoretical framework. First, we describe

howMonte Carlo sampling can be used to approximate Bayesian inference, and summarize the psycholog-

ical evidence for such an approximation. We then introduce amortized inference as a generalization of this

framework.
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6.2.1 Monte Carlo sampling

Bayes’ rule stipulates that the posterior distribution is obtained as a normalized product of the likelihood

P(d|h) and the prior P(h):

P(h|d) = P(d|h)P(h)∑
h′∈H P(d|h′)P(h′)

, (6.2)

whereH is the hypothesis space. Unfortunately, Bayes’ rule is computationally intractable for all but the

smallest hypothesis spaces, because the denominator requires summing over all possible hypotheses. This

intractability is especially prevalent in combinatorial space, where hypothesis spaces are exponentially large.

In the scene inference example,H = H1 ×H2 × · · ·HK is the product space of latent objects, so if there

areK latent objects andM possible objects, |H| = MK. If we imagine there areM = 1000 kinds of objects,

then it only takes K = 26 latent objects for the number of hypotheses to exceed the number of atoms in

the universe.

MonteCarlomethods approximate probability distributionswith samples θ = {h1, . . . , hN} from the

posterior distribution over the hypothesis space. We can understand Monte Carlo methods as producing

a recognition modelQθ(h|d) parametrized by θ 388. In the idealized case, each hypothesis is sampled from

P(h|d). The approximation is then given by:

P(h|d) ≈ Qθ(h|d) = 1
N
∑N

n=1 I[hn = h], (6.3)

where I[·] = 1 if its argument is true (and 0 otherwise). The accuracy of this approximation improves

withN, but from a decision-theoretic perspective even smallNmay be serviceable468,275,145.

The key challenge in applying Monte Carlo methods is that generally we do not have access to samples

from the posterior. Most practical methods are based on sampling from a more convenient distribution,

weighting or selecting the samples in a way that preserves the asymptotic correctness of the approxima-

tion 286. We focus onMarkov chainMonte Carlo (MCMC)methods, themost widely used class of approx-

imations, which are based on simulating aMarkov chain whose stationary distribution is the posterior. In
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other words, if one samples from the Markov chain for long enough, eventually h will be sampled with

frequency proportional to its posterior probability.

A number of findings suggest that MCMC is a psychologically plausible inference algorithm. First,

MCMC does not require knowledge of normalized probabilities at any stage and relies solely on an ability

to compare the relative probabilities of two hypotheses. This is consistent with evidence that humans rep-

resent probabilities on a relative scale436. Second,MCMC allows for feedback between the generation and

evaluation processes. The evaluated probability of already-generated hypotheses influences if and how

many new hypotheses will be generated, consistent with experimental observations 195. Finally, Markov

chains also generate autocorrelated samples. This is consistent with autocorrelation in hypothesis genera-

tion 39,148,469,275

Many implementations use a form of local stochastic search, proposing and then accepting or rejecting

hypotheses. For example, the classicMetropolis-Hastings algorithm first samples a newhypothesis h′ from

a proposal distribution φ(h′|hn) and then accepts this proposal with probability

P(hn+1 = h′|hn) = min
[
1,

P(d|h′)P(h′)φ(hn|h′)
P(d|hn)P(hn)φ(h′|hn)

]
. (6.4)

Intuitively, this Markov chain will tend to move from lower to higher probability hypotheses, but will

also sometimes “explore” low probability hypotheses. In order to ensure that a relatively high propor-

tion of proposals are accepted, φ(h′|hn) is usually constructed to sample proposals from a local region

around hn. This combination of locality and stochasticity leads to a characteristic pattern of small inferen-

tial steps punctuated by occasional leaps, much like the processes of conceptual discovery in childhood462

and creative insight in adulthood442. Even low-level visual phenomena like perceptual multistability can

be described in these terms 148,316.

Another implication ofMCMC, under the assumption that a small number of hypotheses are sampled,

is that inferences will tend to show anchoring effects (i.e., a systematic bias towards the initial hypotheses

in the Markov chain). Lieder and colleagues have shown how this idea can account for a wide variety of

anchoring effects observed in human cognition 272,277. For example, priming someone with an arbitrary

number (e.g., the last 4 digits of their social security number) will bias a subsequent judgment (e.g., about
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Table 6.1: Unpacking induced biases in human hypothesis generation and evaluation.

Name Description References

Subadditivity Perceived probability of a hypothesis is
higher when the hypothesis is described as
a disjunction of typical component
hypotheses (unpacked to typical
examples).
P(Atypical ∪ B) < P(Atypical) + P(B)

Fox & Tversky 122 , Tver-
sky & Koehler 460

Superadditivity Perceived probability of a hypothesis is
lower when the hypothesis is described as a
disjunction of atypical component
hypotheses (unpacked to atypical
examples).
P(Aatypical ∪ B) > P(Aatypical) + P(B)

Sloman et al. 426 , Had-
jichristidis et al. 191

the birth date of Gandhi), because the arbitrary number influences the initialization of the Markov chain.

In previous research73, we have shown that MCMC can account for many other probabilistic reason-

ing “fallacies,” suggesting that they arise not from a fundamental misunderstanding of probability, but

rather from the inevitable need to approximate inference with limited cognitive resources. We explored

this idea using the scene inference task introduced in the previous section. The task facing subjects in our

experiments was to judge the probability of a particular set of latent objects (the hypothesis, h) in a scene

conditional on observing one object (the cue, d). By manipulating the framing of the query, we showed

that subjects gave different answers to formally equivalent queries (see Table 6.1). In particular, by par-

tially unpacking the queried object set (where fully unpacking an object setmeans to present it explicitly as

a union of each of itsmember objects) into a small set of exemplars and a “catch-all” hypothesis (e.g., “what

is the probability that there is a chair, a computer, or any other object beginning with C?”), we found that

subjects judged the probability to be higher when the unpacked exemplars were typical (a “subadditivity”

effect; cf. Tversky & Koehler 460) and lower when the unpacked exemplars were atypical (a “superadditiv-

ity” effect; cf. Sloman et al. 426) compared to when the query was presented without any unpacking.

To provide a concrete example, in the presence of the cue “table,” the typically unpacked query “what
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Canoe			(Atypical	→	superadditivity)Chair		(Typical	→	subadditivity)

Samples	=	{chair} Samples	=	{canoe}

All	objects All	objects	starting	with	“C”

(a) Different initializations

Canoe			(Atypical	→	superadditivity)Chair		(Typical	→	subadditivity)

Samples	=	{chair,?} Samples	=	{canoe,?}

Toothbrush Toothbrush

(b) The same proposal made to both chains

Canoe			(Atypical	→	superadditivity)Chair		(Typical	→	subadditivity)

Samples	=	{chair,	chair} Samples	=	{canoe,	toothbrush}

Toothbrush

(c) Proposal gets accepted or rejected (Equation 6.4)

Under-estimation	(Superadditivity)Over-estimation	(Subadditivity)

(d) Sub- and super-additivity

Figure 6.1: Demonstration of how MCMC sampling can give rise to sub- and super-additivity for different unpacked versions
of the question : “In the presence of a table, what is the probability that there is also another object starting with C?”. The
color gradient indicates probability density. (a) The chain initialized with a typical unpacking starts at ‘chair’, a high probability
hypothesis, denoted by a darker shading, while the chain initialized with an atypical unpacking starts at ‘canoe’, a low probability
hypothesis, denoted by a lighter shading. (b) For the purposes of illustration we show the same new intermediate probability
proposal of ‘toothbrush’ being made to both chains. In the model, this proposal is randomly generated for each chain. (c)
Since the probability of ‘toothbrush’ is significantly higher than ‘canoe’ the proposal is accepted by the atypically unpacked
chain. But conversely since it is significantly less probable than ‘chair’, is likely rejected by the typically unpacked chain. (d)
The tendency for the typically unpacked chain to tarry in the high probability region of the queried object set, gives rise to
sub-additivity, whereas the tendency for the atypically unpacked to get easily derailed into regions outside the queried object
set gives rise to super-additivity.
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is the probability that there is also a chair, a computer, or any other object beginning with C?” generates

higher probability estimates relative to the packed query “what is the probability that there is another

object beginning with C?”, whereas the atypically unpacked query “what is the probability that there is

also a cow, a canoe, or any other object beginningwithC?” generates lower probability estimates compared

to the packed query.

The generative model for this scene inference task is approximated by fitting the database of natural

scenes with hand-labeled objects, provided in Greene 174 , to a latent Dirichlet allocation (LDA) model 36.

Specifically, the database consists of object co-occurrence statistics in natural scenes, which wemodel with

a set of underlying “topics” (probability distributions over objects). This model allows us to analytically

compute the joint probability of any combination of different objects. Finding the exact normalized con-

ditional probabilities is still intractable due to the combinatorially large number of possible hypotheses to

normalize over, but Monte Carlo sampling methods like MCMC can approximate these probabilities.

We were also able to account for the sub- and super-additivity effects using MCMC under the assump-

tion that the unpacked exemplars initialize theMarkov chain that generates the sample set of query objects

conditioned on the given cue object73. Because the initialization of the Markov chain transiently deter-

mines its future trajectory, initializingwith typical examples causes the chain to tarry in the highprobability

region of the queried object set, thereby increasing its judged probability (subadditivity). In contrast, ini-

tializingwith atypical examples causes the chain to getmore easily derailed into regions outside the queried

object set. This decreases the judged probability of the queried object set (superadditivity). The strength

of these effects theoretically diminishes with the number of samples, as the chain approaches its station-

ary distribution. Accordingly, experimental manipulations that putatively reduce the number of samples,

such as response deadlines and cognitive load, moderate this effect73. The experiments reported in this

paper build on these findings, using subadditivity and superadditivity in the scene inference paradigm to

detect behavioral signatures of amortized inference.
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6.2.2 Amortized inference

As defined in the previous section, Monte Carlo sampling is memoryless, approximating P(h|d) without

reference to other conditional distributions that have been computed in the past; all the hypothesis sam-

ples are specific to a particular query, and thus there can be no cumulative improvement in approximation

accuracy across multiple queries. However, a moment’s reflection suggests that people are capable of such

improvement. Every time you look out your window, you see a slightly different scene, but it would be

wasteful to recompute a posterior over objects from scratch each time; if you did, you would be no faster

at recognizing and locating objects the millionth time compared to the first time. Indeed, experimental re-

search has found considerable speed-ups in object recognition and visual searchwhen statistical regularities

can be exploited 334.

Amortized inference is a generalization of the standard memoryless framework. We will formulate it

in the most general possible terms, and later explore more specific variants. Figure 6.2 illustrates the ba-

sic idea. In the standard, memoryless framework, an inference engine inverts a generative model P(d, h)

over hypothesis h and data d to compute a recognition model Qθ(h|d) parametrized by θ. For exam-

ple, Monte Carlo methods use a set of samples to parametrize the recognition model. Importantly, the

answer to each query is approximated using a different set of parameters (e.g., independent samples)—

Qθ1(h|d1),Qθ2(h|d2), etc. In the amortized framework, parameters are shared across queries. The param-

eters are selected to accurately approximate not just a single query, but adistribution of queries. If cognitive

resources are unbounded, then the optimal solution is to parametrize each query separately, thereby recov-

ering thememoryless framework. Under bounded resources, a finite number of parametersmust be shared

between multiple queries, leading to memory effects: the answer to one query affects the answer to other,

similar queries.

While reuse increases computational efficiency, it can cause errors in two ways. First, if amortization is

deployednot onlywhen twoqueries are identical but alsowhen they are similar, then answerswill be biased

due to blurring together of the distributions. This is analogous to interference effects in memory. Second,

the answer to the first query might itself have been inaccurate or biased, so its reuse will propagate that

inaccuracy to the second query’s answer. Our experiments focus on the second type of error. Specifically,
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Q✓(h|d)
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Figure 6.2: Theory schematic. (Left) Standard, memoryless framework in which a recognition model Qθ(h|d) approximates
the posterior over hypothesis h given data d. The recognition model is parametrized by θ (e.g., a set of samples in the
case of Monte Carlo methods). Memoryless inference builds a separate recognition model for each query. (Right) Amortized
framework, in which the recognition model shares parameters across queries. After each new query, the recognition model
updates the shared parameters. In this way, the model “learns to infer.”

wewill investigate how the over- or underestimationof unpackedprobabilities resulting fromapproximate

inference for one query will continue to influence responses to a second query.

6.2.3 Two amortization strategies

In our experiments, we ask participants to sequentially answer pairs of queries (denotedQ1 andQ2). In

Experiment 2, both queries are conditioned on the same cue object (d), but with varying query object sets

(h). That is, both questions are querying the same probability distribution over objects, but eliciting the

probabilities of different objects in each case. So in theory, all samples taken to answer query 1, canbe reused

to answer query 2 (they are both samples from the same distribution). This sample reuse strategy allows

all computations carried out for query 1 to be reused to answer query 2.* However, it is expensive, because

each sample must be stored in memory. A less memory-intensive solution is to store and reuse summary

statistics of the generated samples, rather than the samples themselves. This summary reuse strategy offers

greater efficiency but less flexibility. Several more sophisticated amortization schemes have been developed

*We focus on sampling-based amortization strategies because our earlier experiments support the idea that hu-
man probability judgment is sample-based 73. However, amortization strategies can be realized without any form of
sampling. These typically reduce time complexity by re-using a feedforward mapping from inputs to probabilities
that replaces a more expensive form of iterative computation (e.g., message passing).
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in themachine learning literature441,369,341, but we focus on sample and summary reuse because theymake

clear experimental predictions, which we elaborate below.

In the context of our experiments, summary reuse is only applicable to problems where the answer to

Q2 canbe expressed as the compositionof the answer toQ1 and another (putatively simpler) computation.

In Experiment 2,Q2queries a hypothesis space that is the union of the hypothesis space queried inQ1 and

a disjoint hypothesis space. For example ifQ1 is “What is the probability that there is an object starting

with a C in the scene?”,Q2 could be “What is the probability that there is an object starting with a C or

an R in the scene?”. In this case, samples generated in response toQ1 are summarized by a single number

(“the probability of an object starting with C”), new samples are generated in response to a simpler query

(“the probability of an object starting with R”), and these two numbers are then composed (in this case

added) to give the final estimate forQ2 (“theprobability of anobject startingwithCorR”).This is possible

because both queries are functions of the same probability distribution over latent objects.

These strategies are simplifications of what the brain is likely doing. Reusing all the samples exactly

would involve their storage and is very intensive in its use of memory – in this aspect they are similar to

exemplar models of categorization 328,301. While reusing only the summary statistic is much less memory

intensive, it is unreasonably inflexible to restrict reuse of only the exact statistic in the few places that the

second query can be expressed as a composition of the first query and a simpler computation. We do

not claim that either extreme is plausible, but —to a first approximation— they capture the key ideas

motivating our theoretical framework, and more importantly, they make testable predictions which can

be used to assess which extreme pulls more weight in controlled experiments.

Inparticular, sample-based and summary-based amortization strategiesmakedifferentpredictions about

how subadditivity and superadditivity change as a function of the sample size (Figure 6.3, details of these

implementations can be found in Appendix A.1). For sample-based amortization, as the sample size for

Q1 grows, the effect forQ2 asymptotically diminishes and eventually vanishes as the effect of biased ini-

tialization inQ1washes out. However, initially increasing the sample size forQ1 also amplifies the effects

for Q2 under a sample-based scheme, because this leads to more biased Q1 samples being available for

reuse. The amplification effect dominates up to a sample size of around 230 (estimate for the number of
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Figure 6.3: Simulation of subadditivity and superadditivity effects under sample-based (top) and summary-based (bottom)
amortization strategies. In all panels, the y-axis represents the unstandardized effect size forQ2. Left panels show the effects
of changing the sample size forQ1; right panels show the effects of changing the sample size forQ2. When sample size for
one query is changed, sample size for the other query is held fixed at 230 (the sample size estimated by Dasgupta et al. 73 , in
the previous chapter

.
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samples taken for inference in this domain, reported in Dasgupta et al. 73). This effect can be counteracted

by increasing the sample size forQ2. These are unbiased samples, sinceQ2 is always presented as a packed

query. More such samples will push the effect down by drowning out the bias with additional unbiased

samples.

Under a summary-based strategy, increasing the sample size for Q1 will only diminish the effects for

Q2, because the bias fromQ1 is strongest when the chain is close to its starting point. The effect of early,

biased samples on the summary statistic disappears with more samples. We see also that changing the

number of samples forQ2 does not influence the effect size because the initialization of the chain forQ2

is not influenced by the samples or summary statistic from the answer toQ1. Under the summary-based

strategy, the subadditivity and superadditivity effects forQ2 derive entirely from the same effects forQ1,

which themselves are driven by the initializationDasgupta et al. 73 .

6.2.4 Adaptive amortization

Amortization is not always useful. As we have already mentioned, it can introduce systematic bias into

probabilistic judgments. This is especially true if samples or summary statistics are transferred between

two dissimilar distributions. This raises the question: are human amortization algorithms adaptive? This

question is taken up empirically in Experiment 3. Here we discuss some of the theoretical issues.

Truly adaptive amortization requires a method to assess similarities between queries. Imagine as an

example the situation in which there is a “chair” in the scene and you have to evaluate the probability of

any object starting with a “P”. If afterwards you are told that there is a “book” in another scene, and the

task is again to evaluate the probability of any object starting with a “P”, it could be a viable strategy to

reuse at least some of the previous computations. However, in order to do so efficiently, you would have

to know how similar a chair is to a book, i.e. if they occur with a similar set of other objects on average.

One way to quantify this similarity is by assessing the induced posterior over all objects conditioned on

either “book” or “chair”, and then comparing the two resulting distributions directly. Cues that are more

similar should co-occur with other objects in similar proportions.

To assess the similarity of two distributions over objects induced by two different cues, we will need a
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formal similarity measure. One frequently used measure of similarity between two probability distribu-

tion is the Kullback-Leibler (KL) divergence. For two discrete probability distributions Q and P, the KL

divergence between P andQ is defined as

DKL(P||Q) =
∑
h

P(h) log
P(h)
Q(h)

. (6.5)

The KL divergence is minimized to 0 whenQ and P are identical. We will use this measure in Experiment

3 to select queries that are either similar or dissimilar, in order to examine whether our participants only

exhibit signatures of amortization when the queries are similar.* Note, however, that the exact calculation

of these divergences cannot be part of the algorithmicmachinery used by humans to assess similarity, since

it presupposes access to the posterior being approximated. Our experiments do not yet provide insight

into how humans might algorithmically achieve tractable adaptive amortization, a problem we leave to

future research.

6.3 Experiment 1: Human inference is not memoryless

In Experiment 1, we sought initial confirmation of our central hypothesis: human inference is not memo-

ryless. To detect these “remembrances of inferences past”, we asked participants to answer pairs of queries

sequentially. The first query was manipulated (by packing or unpacking the queried hypothesis) in such

a way that subadditive or superadditive probability judgments could be elicited73. Crucially, the second

query is always presented in packed form, so any differences across the experimental conditions in answers

to the second query can only be attributed to the lingering effects of the first query.

6.3.1 Participants

84 participants (53 males, mean age=32.61, SD=8.79) were recruited via Amazon’s Mechanical Turk and

received $0.50 for their participation plus an additional bonus of $0.10 for every on-time response. The

sample size for this and all of the following experimentswas determined before data collection commenced.

*Our findings do not strongly depend on the use of the KL divergence measure and all of our qualitative effects
remained unchanged when we applied a symmetric distance measure such as the Jensen-Shannon divergence.
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Figure 6.4: Experimental setup. Participants were asked to estimate the conditional probability using a slider bar within a
20-second time limit.

We decided to collect more participants than in our earlier work73 as the sub- and superadditivity effects

might be weaker for the amortized answers to the second query.

6.3.2 Procedure

Participants were asked to imagine playing a game in which their friend sees a photo and then mentions

one particular object present in the photo (the cued object). The participant is then queried about the

probability that another class of objects (e.g., “objects beginning with the letter B”) is also present in the

photo.

Each participant completed 6 trials,* where the stimuli on every trial corresponded to the rows in Ta-

ble 6.2. On each trial, participants first answeredQ1 given the cued object (for example, “I see a lamp in

this photo. What is the probability that I also see a window, a wardrobe, a wine rack, or any other object

starting with a W?”), using a slider bar to report the conditional probability using values between 0 (not

at all likely) to 100 (very likely, see also Figure 6.4).

TheQ1 framing (typical-unpacked, atypical-unpacked or packed) was chosen randomly. Participants

then completed the same procedure forQ2 (immediately afterQ1), conditional on the same cued object.

The framing forQ2was always packed andQ2was always presented as a conjunction (for example, “What

*Note that participants were not directly informed that two consecutive trials are related and were therefore
instructed that there would be 12 trials in total as there are two queries per query pair.
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Table 6.2: Experimental stimuli and queries for Experiment 1.

Cue Q1 Q1-Typical Q1-Atypical Q2

Table C chair, computer,
curtain

cannon, cow, canoe C or R

Telephone D display case, dresser,
desk

drinking fountain,
dryer, dome

D or L

Rug B book, bouquet, bed bird, buffalo, bicycle B or S
Chair P painting, plant, printer porch, pie, platform P or A
Sink T table, towel, toilet trumpet, toll gate,

trunk
T or E

Lamp W window, wardrobe,
wine rack

wheelbarrow, water
fountain, windmill

W or F

is the probability I see an object starting with aW or F?”), where the order of the letters was determined at

random.

Data for this experiment and all subsequent experiments reported in this article were submitted along

with the final manuscript.

6.3.3 Results

Six participants were excluded from the following analysis, four of whom failed to respond on time in

more than half of the questions, and two of whom entered the same response throughout.

We applied one-sided hypothesis testing for all hypothesis involving sub- and superadditivity effects as

these effects only make sense when assessed directionally.

Consistent with our previous studies73, we found both subadditivity and superadditivity effects forQ1,

depending on the unpacking: probability judgments were higher for unpacked-typical queries than for

packed queries (a subadditivity effect; 59.35 vs. 49.67; t(77) = 4.03, p < 0.001) and lower for unpacked-

atypical than for packed queries (a superadditivity effect; 31.42 vs. 49.67; t(77) = −6.44, p < 0.001).

Next we calculated the difference between each participant’s response to every query and the mean

packed response to the same queried object. This difference was then entered as a dependent variable

into a linear mixed effects regression with random effects for both participants and queried objects as

well as a fixed effect for the condition. The resulting estimates revealed both a significant subadditiv-
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ity effect (difference = 12.60 ± 1.25, t(610.49) = 10.083, p < 0.0001) and superadditivity effect

(difference = −15.69± 1.32, t(615.46) = −11.89, p < 0.0001).

Additionally, we found evidence that participants reused calculations fromQ1 forQ2: even though all

Q2 queries were presented in the same format (as packed), the estimates for that query differed depending

on how Q1 was presented. In particular, estimates forQ2 were lower whenQ1 was unpacked to atypical

exemplars (46.38 vs 56.83; t(77) = 5.08, p < 0.001), demonstrating a superadditivity effect that carried

over from one query to the next. We did not find an analogous carry-over effect for subadditivity (58.47

vs. 56.83; t(77) = 0.72, p = 0.4). This is possibly due to the subadditivity effect “washing out” more

quickly (i.e. with fewer samples) than superadditivity, as has been observed in this domain before73.*

Wecalculated the difference between each participant’s response for everyQ2 and themean response for

the sameobject averagedover all responses toQ2 conditional onQ1beingpacked. The resultingdifference

was again entered as the dependent variable into a linear mixed effects regression with both participants

and cued object as random effects as well as condition as a fixed effect. The resulting estimates showed

both a significant subadditivity effect (difference = 4.39 ± 1.14, t(606.40) = 3.83, p < 0.001) and

superadditivity effect (difference = −7.86± 1.21, t(610.41) = −6.50, p < 0.0001).

We calculated eachparticipant’smean response to all packedhypotheses forQ2over all trials as a baseline

measure and then assessed the difference between each condition’s mean response and this mean packed

response. This resulted in a measure of an average effect size for theQ2 responses (how much each partic-

ipant under- or overestimates different hypotheses as compared to an average packed hypothesis). Results

of this calculation are shown in Figure 6.5.

The superadditivity effect was significantly greater than 0 (t(77) = 5.07, p < 0.001). However, the

subadditivity effect did not differ significantly from 0 (t(77) = −0.42, p > 0.6; see also cDasgupta

et al. 73).

Next, we explored whether responses toQ1 predicted trial-by-trial variation in responses toQ2. Fig-

ure 6.6 shows the difference between participants’ estimates forQ1 and the true underlying probability of

*The extent and direction of this asymmetry depends on the difference between how many samples it takes on
average to get out ofmodes once the chain is in them (the root cause of subadditivity), and howmany samples it takes
on average to find high probability areas when the chain is far away from them (the root cause of superadditivity).
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Figure 6.5: Experiment 1: Differences betweenQ2 responses for each condition and an average packed baseline. A negative
relative mean estimate indicates a superadditivity and a positive relative mean estimate a subadditivity effect. Error bars
represent the standard error of the mean.

the query (as derived by letting our MCMC model run until convergence) plotted against the same differ-

ence forQ2.* If participants do indeed reuse computations, then how much their estimates deviate from

the underlying truth forQ1 should be predictive of the deviance of their estimates forQ2.

We found significant positive correlations between the two queries in all conditions when aggregating

across participants (average correlation: r = 0.67, p < 0.01). The same conclusion can be drawn from

analyzing correlations within participants and then testing the average correlation against 0 (r = 0.55,

p < 0.01). Moreover, the within-participant effect size (the response difference between the unpacked

conditions and the packed condition) forQ1 was correlated with responses toQ2 for both atypical (r =

0.35, p < 0.01) and typical (r = 0.21, p < 0.05) unpacking conditions. This means that participants

who showed greater subadditivity or superadditivity forQ1 also showed correspondingly greater effects

*Although we did not initially plan to perform the analysis using difference scores, we believe that this is the
correct way to report our results as it takes into account the mean differences between the judgments. In fact, per-
forming the correction actually lead to smaller correlations and weaker effects overall as compared to using the raw
values.
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Figure 6.6: Trial-by-trial analyses of Experiment 1. Difference between Q1 responses and true probability (as assessed by
our MCMC model) plotted against the same quantity forQ2. Lines show the least-squares fit with standard error bands.

forQ2.

6.3.4 Discussion

Experiment 1 established a memory effect in probabilistic inference: answers to a query are influenced by

answers to a previous query, thereby providing evidence for amortization. In particular, both a sub- and a

superadditivity effect induced atQ1 carried over toQ2, and participants showing stronger effect sizes for

both sub- and superadditivity forQ1 also showed greater effects forQ2.

6.4 Experiment 2: Distinguishing algorithms for amortization

Ournext experiment sought todiscriminatebetween sample-based and summary-based amortization strate-

gies. We follow the logic of the simulations shown in Figure 6.3, manipulating cognitive load atQ1 and
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Q2 in order to exogenously control the number of samples (see Thaker et al. 447 , Dasgupta et al. 73 , for a

similar approach).

In addition to cognitive load, we manipulate the “overlap” of Q1 with Q2, by creating a new set of

queries with no overlap between the hypothesis spaces of the query pairs. We predicted that we would

only see a memory effect for queries with overlapping pairs. This manipulation allows us to rule out an

alternative trivial explanation of our results: numerical anchoring (high answers to the first query lead to

high answers to the second query). If the apparent memory effect was just due to anchoring, we would

expect to see the effect regardless of query overlap, contrary to our predictions.

6.4.1 Participants

80 participants (53 males, mean age=32.96, SD=11.56) were recruited from Amazon Mechanical Turk and

received $0.50 as a basic participation fee and an additional bonus of $0.10 for every on time response as

well as $0.10 for every correctly classified digit during cognitive load trials.

6.4.2 Procedure

The procedure in Experiment 2 was largely the same as in Experiment 1, with the following differences. To

probe if the memory effects arise from reuse or from numerical anchoring, we added severalQ2 queries

to the list shown in Table 6.2. TheseQ2 queries have no overlap with the queried hypothesis forQ1 (for

example, ’T or R’ instead of ’C or R’ in the trial shown in the first row in Table 6.2). In other words, these

queries could not be decomposed such that the biased samples fromQ1would be reflected in the answer

toQ2, so the sub- and super-additive effects would not be seen to carry over toQ2 were reuse to occur.

We refer to these queries as “no overlap”, in contrast to the other “partial overlap” queries in which one of

the letters overlapped with the previously queried letter. Half of the queries had no overlap and half had

partial overlap, randomly interspersed. The stimuli used in Experiment 2 are shown in Table 6.3.

To probe if the memory effect arises from reuse of generated samples (sample-based amortization) or

reuse of summaries (summary-based amortization), we also manipulated cognitive load: on half of the

trials, the cognitive load manipulation occurred atQ1 and on half atQ2. A sequence of 3 different digits
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Table 6.3: Experimental stimuli and queries for Experiment 2.

Cue Q1 Q1-Typical Q1-Atypical Q2 Partial
overlap

Q2 No
overlap

Table C chair, computer,
curtain

cannon, cow,
canoe

C or R T or R

Telephone D display case,
dresser, desk

drinking fountain,
dryer, dome

D or L G or L

Rug B book, bouquet,
bed

bird, buffalo,
bicycle

B or S D or S

Chair P painting, plant,
printer

porch, pie,
platform

P or A M or A

Sink T table, towel, toilet trumpet, toll gate,
trunk

T or E F or E

Lamp W window,
wardrobe, wine
rack

wheelbarrow,
water fountain,
windmill

W or F L or F

was presented prior to the query, where each of the digits remained on the screen for 1 second and then

vanished. After their response to the query, participants were asked to make a same/different judgment

about a probe sequence. Half of the probes were old and half were new.

We hypothesized that partial overlap would lead to stronger amortization effects, whereas no overlap

would lead to weaker effects. Furthermore, if participants are utilizing sample-based amortization, then

cognitive load duringQ2 should increase the amortization effect: ifmore samples are generated duringQ1

(which are the samples that contain the sub- or superadditivity biases) and these samples are concatenated

with fewer unbiased samples during Q2, then the combined samples will be dominated by biased sam-

ples fromQ1 and therefore show stronger effects. Vice versa, if participants are utilizing summary-based

amortization, then cognitive load during Q1 should increase the amortization effect: if less samples are

generated duringQ1, then a summary of those samples will inherit a stronger sub- or superadditivity ef-

fect such that the overall amortization effect will be stronger if the two summaries are combined (assuming

that the summaries are combined with equal or close-to equal weights).
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6.4.3 Results

Analyzing only the queries with partial overlap (averaging across load conditions), we found that proba-

bility judgments forQ1were higher for unpacked-typical compared to packed conditions (a subadditivity

effect; t(79) = 4.38, p < 0.001) and lower for unpacked-atypical compared to packed (a superadditivity

effect; t(79) = −4.94, p < 0.001). These same effects occurred for Q2 (unpacked-typical vs. packed:

t(79) = 2.44, p < 0.01; unpacked-atypical vs. packed: t(79) = −1.93, p < 0.05).

We again calculated the difference between each participant’s response to every query during Q1 and

the overall mean response for the same query object in the packed condition. This difference was then

used as the dependent variable in a linear mixed-effects regression model with participants and queried

object as random effects and condition as fixed effect. The resulting estimates showed both a significant

subadditivity effect (difference = 13.64 ± 1.57, t(396.95) = 8.70, p < 0.0001) and superadditivity

effect (−14.90± 1.56, t(395.48) = −9.55, p < 0.0001). Afterwards, we repeated the same analysis for

responses toQ2 (as in Experiment 1). This analysis again showed significant indicators of amortization as

both the subadditivity (difference = 5.37±1.34, t(398.01) = 4.02, p < 0.001) and the superadditivity

effect (difference = −4.92± 1.34, t(398.01) = −3.69, p < 0.001) were still present duringQ2.

Next, we assessed how the memory effect was modulated by cognitive load and overlap (Figure 6.7).

When cognitive load occurred duringQ2 and there was no overlap, none of the conditions produced an

effect significantly different from 0 (all p > 0.5). When cognitive load occurred during Q2 and there

was partial overlap, only typically unpacked hypotheses produced an effect significantly greater than 0

(t(38) = 2.14, p < 0.05). When cognitive load occurred duringQ1 and there was no overlap, we again

found no evidence that the conditions differ from 0 (all p > 0.05). Crucially, if cognitive load occurred

duringQ1 and there was partial overlap, both conditions showed the expected subadditive (t(38) = 4.18,

p < 0.05) and superadditive (t(46) = −1.89, p < 0.05) effects. Moreover, calculating the average

effect size of amortization for the different quadrants of Figure 6.7, the partial overlap-cognitive load at

Q1 condition produced the highest overall effect (d = 0.8), followed by the partial overlap-cognitive

load at Q2 condition (d = 0.56) and the no overlap-cognitive load at Q1 condition (d = 0.42). The

no overlap-cognitive load atQ2 condition did not produce an effect greater than 0. Partial overlap trials

119



●

●

●

●

●

●

●●

Load at Q1 Load at Q2

P
artial overlap

N
o overlap

Unpacked
Atypical

Unpacked
Typical

Unpacked
Atypical

Unpacked
Typical

−10

0

10

−10

0

10

Condition

R
el

at
iv

e 
m

ea
n 

es
tim

at
es

Experiment 2: Results
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were also more strongly correlated with responses during Q1 than trials with no overlap (0.41 vs 0.15,

t(79) = −2.1, p < 0.05).

Next, we calculated the difference between all responses to Q2 and the mean responses to Q2 over

queried objects provided that Q1 was packed. This difference was entered into a linear mixed-effects re-

gression that contained overlap, cognitive load, and the presentation format ofQ1 as fixed effects, and par-

ticipants and thequeried objects as randomeffects. We then assessed the interactionbetween cognitive load

and the sub- and superadditivity conditions while controlling for overlap. The resulting estimates showed

that there was a significant subadditivity effect (difference = 5.25 ± 2.12, t(417.08) = 2.48 p < 0.05)

but no superadditivity effect (difference = −3.19 ± 2.17, t(419.23) = −1.47, p = 0.17) when

cognitive load was applied during Q2. Importantly, both the subadditivity (difference = 5.83 ± 2.25,

t(418.91) = 2.59, p < 0.05) and the superadditivity (difference = −6.86±2.21, t(419.80) = −3.102,

p < 0.01) effects were present when cognitive load was applied duringQ1. This finding points towards a

larger amortization effect in the presence of cognitive load onQ1, thus supporting a summary-based over

a sampled-based amortization scheme.

Further, on trialswith cognitive load atQ2, participantswere on averagemore likely to answer theprobe

correctly for partial overlap trials compared to no overlap trials (t(36) = 3.16, p < 0.05). This is another

signature of amortization: participants are expected to havemore resources to spare for thememory task at

Q2 if the computations they executed forQ1 are reusable in answeringQ2. This also indicates that these

results cannot be explained by simply initializing the chain forQ2 where the chain forQ1 ended, which

would not have affected the required computations.

Interestingly, there was no evidence for a significant difference between participants’ responses toQ2

under cognitive load in Experiment 2 as compared to participants’ responses toQ2 in Experiment 1 when

no cognitive load during eitherQ1 orQ2was applied (t(314) = −1.44, p = 0.15).

Finally, we assessed how much the difference between responses forQ1 and the true underlying prob-

abilities were predictive of the difference between responses forQ2 and the true underlying probabilities

(Figure 6.8). Therewas a strong correlationbetween responses toQ1 andQ2over all conditions (r = 0.41,

p < 0.001), for the packed (r = 0.44, p < 0.001), the typically unpacked (r = 0.36, p < 0.01), as
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Figure 6.8: Trial-by-trial analyses of Experiment 2. Relationship between difference betweenQ1 responses and true probabil-
ity (as assessed by our MCMC model) andQ2 responses and true probability. Lines show the least-squares fit with standard
error bands.

well as the atypically unpacked condition (r = 0.40, p < 0.01). Moreover, the differences of Q1 and

Q2 responses from the true answer were also correlated within participants (mean r = 0.31, p < 0.01)

and participants who showed stronger subadditivity or superadditivity effects forQ1 also showed stronger

effects forQ2 overall (r = 0.31, p < 0.001), for the superadditive (r = 0.3, p < 0.001), and for the

subadditive condition (r = 0.29, p < 0.001). This replicates the amortization effects from Experiment 1.

6.4.4 Discussion

Experiment 2 extended the findings of Experiment 1, suggesting constraints on the underlying amortiza-

tion strategy. Participants exhibited an intricate pattern of sensitivity to cognitive load and query overlap.

Based on our simulations (Figure 6.3), we argue that the effect of cognitive load atQ1 onQ2 responses

is more consistent with summary-based amortization than with sample-based amortization. Summary-
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based amortization is less flexible than sample-based amortization, but trades this inference limitation for

an increase in memory efficiency, and is thus consistent with the idea that humans adopt cost-efficient

resource-rational inference strategies 145,180,275. Further supporting this idea is our finding that performance

on the secondary task was better in the partial overlap conditions, indicating that more resources are avail-

able when computations can be amortized.

Our design allowed us to rule out a numerical anchoring effect, whereby participants would give high

answers to the second query if they gave high answers to the first query. This effect should be invariant

to the extent of overlap of the queried hypothesis spaces, but contrary to the anchoring hypothesis, the

memory effect was stronger in the high overlap condition.

6.5 Experiment 3: Adaptive re-use of inferences

In this experiment we further probe the strategic nature of amortization. So far, all generated hypotheses

have been reusable, since both queries probe the same probability distribution, conditioned on the same

cue object. By changing the cue object betweenQ1 andQ2 and manipulating the similarity between the

cues, we can control how reusable the computations are. Note that this is in contrast to the notion of

“overlap” in Experiment 2 where all the samples from Q1 are always “reusable” in Q2 since both query

the same probability distribution, but in the no overlap conditions, the queried hypotheses spaces do not

overlap resulting in the biased samples from Q1 not being reflected in Q2 judgments. The notion of

reusability now allows us to test whether or not reuse always occurs, or if it occurs preferentially when it is

more applicable (i.e., under high similarity between cues).

6.5.1 Participants

100 participants (41 females, mean age=35.74, SD=11.69) were recruited from Amazon Mechanical Turk

and received $0.50 as a basic participation fee and an additional bonus of $0.10 for every on time response.
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Table 6.4: Experimental stimuli and queries for Experiment 3. Kullback-Leibler (KL) divergence between the posteriors forQ1
andQ2 are shown in parentheses.

Cue1 Q1 Q1-Typical Q1-Atypical Cue2-sim
(KL)

Cue2-diff
(KL)

Rug B book, bouquet,
bed

bird, buffalo,
bicycle

Curtain
(0.080)

Car (8.658)

Chair P painting, plant,
printer

porch, pie,
platform

Book
(0.031)

Road
(8.508)

Sink T table, towel, toilet trumpet, toll gate,
trunk

Counter
(0.001)

Sidewalk
(8.503)

6.5.2 Procedure

The procedure was similar to Experiments 1 and 2. The only difference was that participants were shown

a new cue word for Q2, asking them to judge the probability of objects starting with the same letter as

the letter fromQ1with no conjunction of letters (i.e., same query space, full overlap). The query forQ2

was always packed, as in previous experiments. The new cue words forQ2 were generated to either have

posterior with a low (similar cues) or a high (dissimilar cues) KL divergence from theQ1 posterior. The

range of KL divergences fell between 0 and 9; all similar cue words had conditional distributions with KL

divergence of less than 0.1, and all dissimilar cue-words had a KL divergence of greater than 8.5. The exact

KL divergences are reported in Table 6.4.

6.5.3 Results

Seven participants did not respond on time to more than a half of all queries and were therefore excluded

from the following analysis.

We again found that probability judgments forQ1 in the typically unpackedquerieswere higher than in

the unpacked condition (subadditivity effect: t(92) = 4.67, p < 0.001) and that probability judgments

in the atypically unpacked condition were lower than in the unpacked condition (superadditivity effect:

t(92) = 3.25, p < 0.01).

Analyzing the probability judgments forQ2, we found a significant subadditivity effect ((t(92) = 2.28,

p < 0.05) but not a significant superadditivity effect (56.06 vs. 55.31; t(92) = 0.07,p = 0.94).

124



●

●

●

●

Similar cue Dissimilar cue

Unpacked
Atypical

Unpacked
Typical

Unpacked
Atypical

Unpacked
Typical

−5

0

5

10

15

Condition

R
el

at
iv

e 
m

ea
n 

es
tim

at
es

Experiment 3: Results

Figure 6.9: Experiment 3: Differences betweenQ2 responses for each condition and an average packed baseline. A negative
relative mean estimate indicates a superadditivity effect and a positive relative mean estimate a subadditivity effect. Error bars
represent the standard error of the mean.

As before, we calculated the difference between each participant’s response to every query duringQ1

and the overall mean response for the same query object in the packed condition. This difference was

entered as thedependent variable into a linearmixed-effects regressionmodelwithparticipants andqueried

object as random effects and condition as fixed effect. The resulting estimates showed both a significant

subadditivity effect (difference = 14.39 ± 1.97, t(189.84) = 7.31, p < 0.0001) and a superadditivity

effect (−13.72± 1.98, t(190.18) = −6.941, p < 0.0001). Repeating this analysis for responses toQ2

revealed a significant amortization effect for the typically unpacked condition (difference = 5.21± 1.90,

t(191) = 2.74, p < 0.05) but not for the atypically unpacked condition (difference = −2.49 ± 1.91,

t(191.52) = −1.303 p = 0.19).

For the dissimilar cues, we did not find statistical evidence for an effect of subadditivity (t(49) = 1.31,

p = 0.19) or superaditivity (t(47) = −0.27, p = 0.79). However, for the similar cues atQ2, the effect

for the typically unpacked conditionwas significantly different from0 (subadditivity effect: t(47) = 3.30,

p < 0.01), whereas there was again no superadditivity effect (t(48) = 0.54, p = 0.59). The difference

between the size of the subadditivity effect was marginally bigger for the similar cues as compared to the

dissimilar cues (t(36) = 1.83, p = 0.07) and the overall effect size of the similar cues was d = 0.17,
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Figure 6.10: Trial-by-trial analyses of Experiment 3. Relationship between difference betweenQ1 responses and true proba-
bility (as assessed by our MCMCmodel) andQ2 responses and true probability. Lines show the least-squares fit with standard
error bands.

whereas the effect size for the dissimilar cues was d = 0.11.

The difference between judgments and the true probabilities was correlated betweenQ1 andQ2 (r =

0.34, p < 0.001), for the packed (r = 0.43, p < 0.001), the typically unpacked (r = 0.43, p < 0.001),

but not the atypically unpacked condition (r = 0.20, p = 0.3); see Figure 6.10. Participants who showed

higher subadditivity or superadditivity effects forQ1 also showed higher effects forQ2 overall (r = 0.29,

p < 0.001), for the typically unpacked condition (r = 0.39, p < 0.001), but not for the atypically

unpacked condition (r = 0.11, p = 0.29).

6.5.4 Discussion

Experiment 3 assessed the strategic nature of amortization by manipulating the similarity between cues,

which presumably affected the degree to which amortization is useful. We found a stronger subadditivity
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effect for similar cues compared to dissimilar cues, indicating that reuse is at least partially sensitive to

similarity.

An unexpected finding was that while the superadditivity effect in aytpically-unpacked Q1 was sig-

nificant, neither the memory-based superadditivity effect (in Q2) nor correlations across the queries for

atypically-unpackedQ1 were significant. This indicates that the answers to the atypically-unpackedQ1

are not detectably being reused inQ2 in this experiment. However, in Experiments 1 and 2, the atypically-

unpacked answers seem to be reused (as indicated by a robust memory-based superadditivity effect, and

correlations across the queries)when the cue object remains the same. This may be because the extent of ra-

tional reuse here (where the cues change) is smaller than in previous experiments (where the cues remained

the same) and therefore harder to detect.

6.6 General Discussion

We tested a model of amortized hypothesis generation across 3 experiments and found that participants

not only exhibited subadditive and superadditive probability judgments in the same paradigm replicating

Dasgupta et al. 73 , but also carried over these effects to subsequent queries—a memory effect on inference.

Experiment 2 demonstrated that this memory effect is some function of the hypotheses generated in the

first query and made some inroads into trying to understand this function. We found that the effect is

stronger when cognitive load is applied to the first query, suggesting that the memory effect is driven by

a form of summary-based amortization, whereby a summary statistic of the first query is computed from

the samples and then reused to answer subsequent queries, provided they can be expressed in terms of

previous computations. Summary-based amortization gives up some flexibility (compared to reusing the

raw samples generated by past inferences), in order to gainmemory-efficiency. Experiment 3 demonstrated

that the memory effect selectively occurs when the queries are similar, indicating that reuse is deployed

specifically when it is likely to be useful.

Building on earlier results 142, our findings support the existence of a sophisticated inference engine that

adaptively exploits past computations. While reuse can introduce error, this error may be a natural con-

sequence of a resource-bounded system that optimally balances accuracy and efficiency 272,468,180,145. The
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incorporation of reuse into a Monte Carlo sampling framework allows the inference engine to preserve

asymptotic exactness while improving efficiency in the finite-sample regime.

6.6.1 Related work

This work fits into a larger nexus of ideas exploring the role of memory in inductive reasoning. Heit,

Hayes and colleagues have carried out a number of studies that make this link explicit 203,199,200,197. For

example, Heit & Hayes 203 developed a task in which participants studied a set of exemplars (large dogs

that all possess “beta cells”) and then on a test set of exemplars (consisting of large and small dogs) made

either property induction judgments (“does this dog have beta cells?”) or recognition memory judgments

(“did this dog appear in the study phase?”). The key finding was that property induction and recognition

memory judgments were strongly correlated across items, supporting the hypothesis that both judgments

rely on a shared exemplar similarity computation: test exemplars are judged to be more familiar, and have

the same latent properties, to the degree that they are similar to past exemplars. Heit and Hayes showed

that both judgments could be captured by the same exemplar model, but with a broader generalization

gradient for induction.

Another example ofmemory effects on inference is the observation thatmaking a binary decision about

a noisy stimulus (whether dots are moving to the left or right of a reference) influences a subsequent con-

tinuous judgment about motion direction 222. Stocker and colleagues440,284 refer to this as “conditioned

perception”’ or “self-consistent inference” because it appears as though observers are conditioning on their

decision as they make a choice. Fleming & Daw 120 have pushed this idea further, arguing that observers

condition on their own confidence about the decision. Self-consistent inferences may reflect rational con-

ditioning on choice or confidence information when a memory trace of the stimulus is unavailable or un-

reliable.

Another important consideration for the study of amortization is the utility conferred by reuse rather

than simply the efficiency. Previous work has explored resource-rational solutions to balancing the utility

of events with their probability of occurrence 274,150,272,468. These have successfully modeled effects such as

the over-representation of low frequency events with extreme utilities, indicating a possible role for utility
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in availability for subsequent reuse.

An intriguing explanation of order effects has been reported by Wang and colleagues474,475. The key

idea, derived from a quantumprobabilitymodel of cognition (see alsoTrueblood&Busemeyer 455), is that

answering a question will cause the corresponding mental state to linger and thus “superpose” with the

mental state evoked by a second question. This superposition gives rise to a particular symmetry in the

pattern of judgments when question order is manipulated, known as the quantum question order equality

(see Wang & Busemeyer 474 for details). Our amortization framework does not intrinsically make this

prediction, but nor does it necessarily exclude it. Rather, we prefer to think about superposition states as

arising from computational principles governing a computation-flexibility trade-off. Roughly speaking,

states superpose in our framework because the inference engine is reusing information from past queries.

Recently, Costello & Watts 69 pointed out that the quantum question order equality could arise from

rational probabilistic reasoning corrupted by correlated noise. In particular, answers to a probabilistic

query will be corrupted by samples retrieved recently to answer another probabilistic query (similar to the

concept of “overgeneralization” in probabilistic estimation, as developed in Marchiori et al. 288). Costello

&Watts 69 view this as a kind of priming effect. Alternatively, correlated noise would arise in the amortized

inference framework due to stochastic reuse. Thus, amortizationmight provide a complementary rational

analysis for the “probability theory plus noise” model proposed by Costello & Watts 69 .

Most closely related to the present paper is the work of Dougherty and colleagues 89,448,449,94,93, who

have pursued the idea that probability judgments depend on the generation of hypotheses from memory.

In particular, they argue that subadditivity arises from the failure to generate hypotheses, much like the

account offered by Dasgupta et al. 73 , and that this failure is exacerbated by cognitive load or low working

memory capacity. The key difference from our account is the particular way in which memories are used

to generate hypotheses. For combinatorial hypothesis spaces like the scene inference task used here and by

Dasgupta et al. 73 , one cannot assume that all the relevant hypotheses are already stored in memory; rather,

these must be generated on the fly—a function we ascribe to MCMC sampling, where new hypotheses

that have never been seen before can be generated from a probabilistic generative model, and only these

generated samples need be stored for the purposes of inference. The present paper asserts a more direct
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role for memory within a sampling framework, by controlling the trade-off between computation and

flexibility.

This trade-off mirrors a similar tension in reinforcement learning, where the goal is to estimate long-

term reward78,77,250. This is discussed in greater detail in Chapter 4. “Model-based” algorithms estimate

long-term reward by applying tree search or dynamic programming to a probabilisticmodel of the environ-

ment. This is flexible, but computationally expensive. “Model-free” algorithms avoid this cost by directly

estimating long-term rewards by interacting with the environment, storing these estimates in a look-up

table or function approximator. This is computationally cheap but inflexible. In other words, model-free

algorithms trade time for space, much in the same way that amortized inference uses memory to reduce

the cost of approximate inference. Analogous to our proposed summary-based amortization strategy, re-

cent work has suggested that model-free value estimates can be incorporated into model-based tree search

algorithms 239, thus occupying a middle ground in the time-space trade-off.

Our work has focused on fairly simple forms of amortization. There exists a much larger space of more

sophisticated amortization strategies developed in the machine learning literature441,369. Finding behav-

iorally distinguishable versions of these algorithms is an interesting challenge. These versions could take

the form of reuse in much more abstract ways, such as developing strategies and heuristics, instead of just

local reuse in a sequence of queries. We believe that further examining established effects of heuristics

and biases through the lens of computational rationality will continue to produce interesting insights into

principles of cognition. We further this approach in the next Chapter, exploring amortization in greater

detail.
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7
Amortization in a variational framework

In the previous two chapters, we have discussed how several observations about human probabilistic in-

ference can be explained with sampling-based approximation architectures under ecological constraints.

However, these models cannot account for a crucial characteristic of some of these deviations: depending

on the domain, they sometimes go in opposite directions. Whereas some studies suggest that people under-

react to prior probabilities (base rate neglect), other studies find that people under-react to the likelihood

of the data (conservatism). While these have separately been modeled as different heuristics, it remains

unclear why one heuristic appears in certain domains, while a different one applies in other domains.

I argue that these deviations arise because the human brain does not rely solely on a general-purpose

mechanism for approximating Bayesian inference that is invariant across queries. Instead, the brain is

equippedwith a recognitionmodel thatmaps queries to variational probability distributions, that flexibly

amortizes previous computations. The parameters of this recognition model are optimized to get the out-

put as close as possible, on average, to the true posterior. Because of our limited computational resources,
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the recognitionmodel will allocate its resources so as to bemore accurate for high probability queries than

for low probability queries. This results in heuristic inference strategies, that adapt to the environment.

By adapting to the query distribution, the recognition model exhibits ecological rationality.

I show that this theory can explain why and when people under-react to the data or the prior, and a

new experiment demonstrates that these two forms of under-reaction can be systematically controlled by

manipulating the query distribution. The theory also explains a range of related phenomena: memory

effects, belief bias, and the structure of response variability in probabilistic reasoning. It can also explain

a quandary from the previous chapter of how to flexibly re-use inferences across different probability dis-

tributions. I also discuss how the theory can be integrated with sampling-based accounts of approximate

inference.

7.1 Context-sensitivity of inferential errors

Studies of probabilistic reasoning frequently portray people as prone to errors458,427,175,118. The cognitive

processes that produce these errors is the subject of considerable debate 302,153,390. One influential class of

models holds that rational probabilistic reasoning is too cognitively burdensome for people, who instead

use a variety of heuristics458,158,406. Alternatively, rational process models hold that errors arise from princi-

pled approximations of rational reasoning, for example some form of hypothesis sampling73,391,184. These

different perspectives have some common ground; certain heuristics might be considered accurate approx-

imations 155,343,23.

One challenge facing both heuristic and rational process models is that people appear to make different

errors in different contexts. For example, some studies report base rate neglect 12,31,175,234, the finding that

people under-react to prior probabilities relative to Bayes’ rule. Other studies report conservatism 358,354, the

finding that people under-react to evidence.*

Heuristic models respond to this challenge by allowing heuristics to be context-sensitive, an example of

*We will mostly avoid the term “conservatism” to denote under-reaction to data, because it is sometimes con-
flated with a bias to give “conservative” probability judgments (i.e., judgments close to uniform probability). These
distinct phenomena make the same predictions only when the prior is uniform over hypotheses. We return to the
second use of the term later in the article.
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strategy selection 154,291. Mostmodels of strategy selection assume that people are able to assess the usefulness

of a strategy, through cost-benefit analysis223,18,270, reinforcement learning 101,371, or based on the strategy’s

applicability in a particular domain 292,400. All of these approaches require, either explicitly or implicitly,

a feedback signal. This requirement poses a problem in inferential settings where no feedback is available.

People can readily answer questions like “How likely is it that a newly invented machine could transform

a rose into a blackbird?” 177 which lack an objective answer even in principle.

Most rational process models are based on domain-general algorithms, and thus struggle to explain the

context-sensitivity of inferential errors see 304 for a similar argument. Some models explain why certain

kinds of queries induce certain kinds of errors73, but do not explain how errors can bemodulated by other

queries in the same context 142,74.

In this paper, we develop a new class of rational process models that explain the context-sensitivity of

inferential errors. Specifically, we propose that people learn to infer. Instead of a domain-general inference

algorithm that treats all queries equally, we postulate an approximate recognition model 82,241 that maps

queries to posterior probabilities.* The parameters of this recognition model are optimized based on the

distribution of queries, such that the output is on average as close as possible to the true posterior. This

leads to learned biases in which sources of information to ignore, depending on which of these sources

reliably co-vary with the true posterior.† Importantly, this optimization is carried out without explicit

feedback about the true posterior 310.

Like other rational process models, our approach is motivated by the fact that any computationally

realistic agent that performs inference in complex probabilistic models—in the real world, in real time—

will need tomake approximate inferences. Exact Bayesian inference is almost always impossible. “Learning

to infer” refers to a particular approximate inference scheme, using a pattern recognition system (such as

a neural network, but it could also be an exemplar generalization model) to find and exploit patterns in

*When the recognitionmodel is parametrized as a neural network, it is sometimes also referred to as an inference
network 310,368,341.

†We focus on domains where we can control this covariance (of information sources with the posterior) within
an experiment, to study the development of context-sensitive inferential errors. We also discuss how similar mech-
anisms could explain errors in more ’real-world’ domains where this context is learned from experience before the
experiment, based on ecological distributions of the relevant probabilities.
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the conditional distribution of hypotheses given data (the posterior). Wewill argue that a relatively simple

model of learned inference is both a good approximate inference scheme, purely on algorithmic terms, and

also can account for a number of patterns of heuristic inference in the behavioral literature, where people

have been observed to deviate from ideal Bayesian updating in ways that are otherwise hard to reconcile

and even appear contradictory, because they appear to deviate from Bayesian norms in different ways and

in different contexts. Our theory of learning to infer explains why these contextual variations are observed,

and why they should be observed, in a system designed to adapt efficient approximate inference to the

environments it finds itself in.

The rest of the paper is organized as follows. We first summarize the empirical and theoretical literature

on our motivating puzzle (under-reaction to prior vs. likelihood). We then introduce our new theory. In

addition to addressing under-reaction, we show that the theory can explain a number of related phenom-

ena: memory effects, belief bias, and the structure of response variability in probabilistic reasoning. In the

Discussion, we connect our theory to previous accounts of approximate inference in human probabilistic

reasoning.

7.2 Under-reaction to probabilistic information

Given data d, Bayes’ rule stipulates how a rational agent should update its prior probabilistic beliefs P(h)

about hypothesis h:

P(h|d) = P(d|h)P(h)∑
h′ P(d|h′)P(h′)

, (7.1)

where P(h|d) is the agent’s posterior distribution, expressing its updated beliefs, and P(d|h) is the likeli-

hood, expressing the probability of the observed data under candidate hypothesis h.

The earliest studies of probabilistic belief updating, carried out byWard Edwards and his students 358,99,

asked subjects to imagine a set of 100 bags filled with blue and red poker chips. “Red” bags were filled

predominantly with red chips, and “blue” bags were filled predominantly with blue chips; the proportion

of colors in each bag type was known to the subjects and manipulated experimentally. The subjects were
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told that one of the bagswas randomly selected and a set of chipswas randomly drawn from that bag. They

then had to judge the probability that the observed chips came from each bag, by distributing 100 metal

washers between two pegs. The proportion of washers on each pegwas taken to be the subjective report of

the corresponding probability. Closely related studies by Peterson and colleagues used a continuous slider

as the response apparatus 355,354,356. It is important to emphasize that in these studies, subjects were given all

the relevant information about the data-generating process necessary for computing the posterior. Thus,

there should be no learning about the parameters of this process (i.e., the prior and likelihood).

Early on, it was evident that subjects were not exactly following Bayes’ rule in these experiments, despite

being given all the information needed to compute it. In particular, subjects consistently under-reacted to

the evidence, revising their beliefs less than mandated by Bayes’ rule (a phenomenon commonly referred

to as “conservatism,” though we avoid this term for reasons explained in the Introduction). This phe-

nomenon was robust across many variations of the basic experimental paradigm; later we will discuss a

number of factors that influence the degree of under-reaction.

Several hypotheses about the origin of under-reaction were put forth for a comprehensive review, see 25.

One hypothesis held that subjects compute Bayes’ rule correctly, but had an inaccurate understanding of

the underlying sampling distributions. Formally, subjects canbemodeled as reporting the followingbiased

posterior π(h|d):

π(h|d) = π(d|h)P(h)∑
h′ π(d|h′)P(h′)

(7.2)

where biases in the posterior are driven by biases in the subjective sampling distribution π(d|h). To accom-

modate the existence of under-reaction, subjects would need to assume subjective sampling distributions

that were flatter (more dispersed) than the objective distributions. Edwards 99 proposed that the subjective

sampling distribution could be modeled as:

π(d|h) = [P(d|h)]ω∑
d′ [P(d′|h)]ω

. (7.3)

The parameter ω controls the dispersion of the sampling distribution. When ω = 1, the subjective and
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objective sampling distributions coincide. Under-reaction occurs when ω < 1.

The biased sampling distributionhypothesiswas supported by the observation that subjective sampling

distributions were indeed flatter than the objective ones, and substituting these beliefs into Bayes’ rule ac-

corded well with reported posterior beliefs 353,479. On the other hand, a critical weakness of this hypothesis

is that it cannot explain the existence of under-reaction with a sample size of 1, which would require that

subjects disbelieve the experimenter when they are explicitly told the sampling distribution (i.e., the pro-

portion of red chips in the bag). Moreover, even when subjective sampling distributions are entered into

Bayes’ rule, under-reaction is still sometimes observed e.g., 186.

These weaknesses of the biased sampling distribution hypothesis motivated the alternative hypothesis

that subjects are systematically under-weighting the likelihood 358, what Edwards 99 referred to as “conser-

vatism bias.” This hypothesis can be formalized using a generalized version of Bayes’ rule:

P(h|d) ∝ [P(d|h)]γP(h)∑
h′ [P(d|h′)]γP(h′)

, (7.4)

where γ is a free parameter specifying the weighting of the likelihood. Note that this model is superficially

similar to Edwards 99 ’s formalization of the biased sampling distribution hypothesis, and in fact ω = γ

when the denominator of π(d|h) (
∑

d′ [P(d′|h)]ω) is constant as a function of h (for example, in sym-

metric problems, where the proportion of red chips in red bags is one minus the proportion of red chips

in blue bags). However, the psychological interpretation is different: the biased sampling distribution

hypothesis assumes that bias enters at the level of the sampling distribution representation, whereas the

conservatism bias hypothesis assumes that bias enters when subjects combine the prior and likelihood.

Thus, conservatism bias offers no explanation for why subjective sampling distributions should be biased.

It can, however, accommodate the fact that under-reaction occurs for sample sizes of 1, because it posits

that even explicit knowledge of the sampling distribution will not prevent biased updating. Likewise, it

accommodates the observation that under-reaction is still sometimes observed when subjective sampling

distributions are entered into Bayes’ rule.

A third hypothesis, first proposed by DuCharme 97 , is a form of “extreme belief aversion” see also 25. If

subjects avoid reporting extremebeliefs, then largeposterior oddswill bepulled towards0. Consistentwith
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this hypothesis, DuCharme 97 found that subjective odds coincided with the true posterior odds only for

posterior odds between−1 and 1; outside this range, subjective odds were systematically less extreme than

posterior odds. A weakness of the extreme belief aversion hypothesis, at least in its most basic form, is that

it assumes a fixed transformation of the true posterior, whichmeans that it cannot account for experiments

in which under-reaction changes across conditions while the true posterior is held fixed e.g., 176,253,26.

The literature on under-reaction to evidence faded away without a satisfactory resolution, in part be-

cause research was driven towards the study of under-reaction to priors by the work of Kahneman and

Tversky234,233. Instead of using laboratory-controlled scenarios involving bags filled with poker chips, Kah-

neman & Tversky 234 invoked more realistic scenarios such as the following:

Jack is a 45 year old man. He is married and has four children. He is generally conservative,
careful, and ambitious. He showsno interest in political and social issues and spendsmost of
his free time on his many hobbies which include home carpentry, sailing, andmathematical
puzzles.

One group of subjects was told that Jack is one of 100 individuals, 30 of whom are lawyers, and 70 of

whom are engineers. Another group of subjects was told that 70 of the individuals were lawyers and 30

were engineers. Kahneman and Tversky found that subjects were largely insensitive to this manipulation:

subjects in the first group reported, on average, that the posterior probability of Jack being an engineer

was 0.5, and subjects in the second group reported a posterior probability of 0.55. Thus, subjects clearly

under-reacted to prior probabilities—i.e., they exhibited base rate neglect.*

Many subsequent studies have reported under-reaction to priors, though the interpretation of these

studies has been the focus of vigorous debate see 248,15. It has been observed in incentivized experiments

e.g., 175,127, in real-worldmarkets 14, and in highly trained specialists such as clinicians98 and psychologists238.

In addition to establishing the empirical evidence for under-reaction to priors, Kahneman&Tversky 233

also proposed the most influential account of its psychological origin. They argued that instead of follow-

ing Bayes’ rule, people may use a representativeness heuristic, judging the probability of a hypothesis based

*Although base rate neglect was popularized by Kahneman and Tversky’s work, it was in fact documented ear-
lier using the poker chip paradigm 358, but this observation was mostly ignored by subsequent research using that
paradigm.

137



on the similarity between the observed data and “representative” data under that hypothesis. For example,

the vignette describing Jack is intuitively more representative of engineers than it is of lawyers. If people

judge the probability of category membership based solely on representativeness, then they will neglect

the prior probability of lawyers and engineers in the population, consistent with Kahneman andTversky’s

results.

To capture under-reaction to priors formally, the model introduced in Eq. 7.4 can be generalized to

allow insensitivity to the prior 175:

P(h|d) ∝ [P(d|h)]αLP(h)αP∑
h′ [P(d|h′)]αLP(h′)αP

, (7.5)

As before, αL < 1 implies insensitivity to the likelihood; in addition, αP < 1 implies insensitivity to the

prior (base rate neglect). Grether 175 referred to the case in which αL > αP > 0 as the representativeness

hypothesis.

In the special case where αL = 1 and αP = 0, the posterior is simply the normalized likelihood. This

corresponds to the model of representativeness judgments proposed by Tenenbaum&Griffiths 446 in the

casewhere there are twomutually exclusive hypotheses. Thismodel accounts forwhy twoobservations can

have the same likelihood but differ in their perceived representativeness. For example, a fair coin is equally

likely to generate the sequencesHHHHandHTHT(where “H”denotes heads and “T”denotes tails), but

people intuitively perceive the latter sequence as more representative of a fair coin. Similarly, people per-

ceive “being divorced 4 times” as more representative of Hollywood actresses than “voting Democractic,”

even though the latter has a higher likelihood459.

The model put forward by Tenenbaum and Griffiths formalizes the idea that representativeness is tied

to diagnosticity: the extent to which the data are highly probable under one hypothesis and highly improb-

able under an alternative hypothesis. Gennaioli & Shleifer 133 offered a different formalization of represen-

tativeness that also captures the notion of diagnosticity. They model probability judgments based on con-

sideration of data that are accessible in memory see also92. Judgmental biases arise when an agent engages

in “local thinking” (retrieving data frommemory based on its diagnosticity). This resonates with modern

theories of episodic memory, which posit that the retrievability of information is related to its distinctive-
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ness; under the assumption that information is stored and/or retrieved probabilistically, distinctiveness

is directly related to diagnosticity 299,413. Consistent with the diagnosticity hypothesis, Fischhoff & Bar-

Hillel 117 showed greater under-reaction to the evidence when diagnosticity was higher see also 12,333. How-

ever, a meta-analysis by Benjamin 25 showed that most studies actually find the opposite pattern: under-

reaction to the evidence is positively correlated with diagnosticity. One goal of our theoretical account is

to resolve this discrepancy.

While much of the work on under-reaction to the prior discussed above was largely driven by findings

in more ‘realistic’ scenarios, such effects are also found in more laboratory-controlled paradigms like those

in Peterson & Miller 351 and Edwards 99 . In particular, when the parameters of the model in Equation 7.5

are fit to behavioral data from studies using such laboratory-controlled stimuli, the value of αP is generally

between 0 and 1 – indicating that subjects sometimes under-weight the prior in these cases as well, but

do not neglect it completely 25. This formulation therefore allows for the case where both αP and αL are

less than 1, corresponding to a version of the “system neglect” hypothesis proposed by Massey & Wu 297 :

both the likelihood and prior are neglected, producing an overall insensitivity to variations in the data-

generating process. An important implication is that the two forms of under-reaction are compatible (one

canunder-react to both the likelihood and the prior) and could potentially be explained by a unifiedmodel,

with similar mechanisms acting across these different domains. A goal of our theoretical account is to

understand when under-reaction occurs and when such under-reaction to one source is more prominent

than under-reaction to the other.

In summary, the literature on probabilistic belief updating has produced evidence for under-reaction

to both prior probabilities and evidence. We now turn to the development of a theoretical account that

will explain several aspects and properties of these and other errors.

7.3 Learning to infer

To understand why people make inferential errors, we need to start by understanding why inference is

hard, and what kinds of algorithms people could plausibly use to find approximate solutions. We will

therefore begin this section with a general discussion of approximate inference algorithms, identify some
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limitations of these algorithms (both computationally and cognitively), and then introduce the learning to

infer framework, which addresses these limitations. This framework provides the basic principles needed

to make sense of under-reaction.

7.3.1 Approximate inference

The experiments discussed above involved very simple (mostly binary) hypothesis spaces where Bayes’ rule

is trivial. But in the more realistic domains that humans commonly confront, the hypothesis space can be

vast.

For example, consider a clinician diagnosing a patient. A patient can simultaneously have any of N

possible conditions. This means that the hypothesis space contains 2N hypotheses. Or consider the seg-

mentation problem, faced constantly by the visual system, of assigning each retinotopic location to the

surface of an object. If there are K objects and N locations, the hypothesis space contains KN hypotheses.

Such vast hypothesis spaces render exact computation of Bayes’ rule intractable, because the denomina-

tor (the normalizing constant, sometimes called the partition function or marginal likelihood) requires

summation over all possible hypotheses.

Virtually all approximate inference algorithms address this problem by circumventing the calculation

of the normalizing constant 140. For example, Monte Carlo algorithms9 approximate the posterior using

Mweighted samples {h1, . . . , hM}:

P(h|d) ≈
M∑

m=1
wmI[hm = h], (7.6)

where wm is the weight attached to sample m, and I[·] = 1 if its argument is true (0 otherwise). Markov

chain Monte Carlo algorithms, generate these samples from a Markov chain whose stationary distribu-

tion is the posterior, and the weights are uniform, wm = 1/M. The Markov chain is constructed in such

a way that the transition distribution does not depend on the normalizing constant. Importance sam-

pling algorithms generate samples simultaneously from a proposal distribution P̃(h), with weights given

bywm = P(d|hm)P(hm)/P̃(hm).
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Most cognitive theories of approximate inference have appealed to some form of Monte Carlo sam-

pling, for several reasons. First, they can explain response variability in human judgments as arising from

randomness in the sampling process 87,468,149. Second, they can explain a wide range of inferential errors,

ranging from subadditivity to the conjunction fallacy 391,73. Third, they can be implemented in biologically

plausible circuits with spiking neurons 54,337,192.

MonteCarlo algorithms canbe thoughtof as procedures for generating an approximateposteriorQφ(h|d)

parametrized by the set of weights and samples, φ = {wm, hm}Mm=1. The supersetΦ of all feasible sets (i.e.,

the sets that can be produced by a particular Monte Carlo algorithm) defines an approximation family.

This leads us to a more general view of approximate inference as an optimization problem: find the ap-

proximation (parametrized by φ ∈ Φ) that gets “closest” to the true posterior,

φ∗ = argmin
φ∈Φ

D[Qφ(h|d)||P(h|d)], (7.7)

where dissimilarity between the two distributions is measured by a divergence functionalD. MostMonte

Carlo algorithmsdonot directly solve this optimizationproblem, but instead randomly sample φ such that,

in the limitM → ∞, they produce φ∗. It is however possible to design non-randomized algorithms that

directly optimize φ 389 in a sample-based approximation. Such optimization is an example of variational

inference 228, because the solution can be derived using the calculus of variations. The most commonly

used divergence functional is the Kullback-Leibler (KL) divergence (also known as the relative entropy):

DKL[Qφ(h|d)||P(h|d)] =
∑
h

Qφ(h|d) log
Qφ(h|d)
P(h|d)

. (7.8)

The variational optimization view of approximate inference allows us to consider more general ap-

proximation families that go beyond weighted samples. In fact, the approximate posterior can be any

parametrized function that defines a valid probability distribution over the relevant hypothesis space. For

example, researchers haveuseddeepneural networks as flexible function approximators 82,241,310,368,341. From

a neuroscience perspective, this approach to approximate inference is appealing because it lets us con-

template complex, biologically realistic approximation architectures provided that the optimization pro-
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cedures can also be realized biologically; see481. For example, particular implementations of variational

inference have been used to model hierarchical predictive coding in the brain 124,139.

7.3.2 Amortization

Most approximate inference algorithms are memoryless: each time the system is queried (i.e., given data

and asked to return the probability of a hypothesis or subset of hypotheses), the inference engine is run

with a fresh start, oblivious to any computations it carried out before. This has the advantage that the

algorithmwill be unbiased, and hence with enough computation the parameters can be fine-tuned for the

current query. But memorylessness can also be colossally wasteful. Consider a doctor who sees a series

of patients. She could in principle recompute her posterior from scratch for each set of observed symp-

toms. However, this would fail to take advantage of computational overlap across diagnostic queries,

which would arise if multiple patients share symptom profiles. To address this problem, computer sci-

entists have developed a variety of amortized inference algorithms that reuse computations across multiple

queries 82,241,310,368,341,441,104,473,378,293.

To formalize this idea, let the data variable d subsume not only the standard “observation” (e.g., symp-

toms in the diagnostic example) but also the information provided to the agent about the generativemodel

P(d, h) and the subset of the hypothesis space being queried (e.g., a particular diagnostic test, which is a

subset of the joint diagnosis space). In the “classical” approximate inference setting, the inference engine

computes a different approximate posterior for each query, with no memory across queries. In the amor-

tized setting, we allow sharing of parameters across queries (Figure 7.1). Optimizing these parameters in-

duces a form of memory, because changes to the parameter values in response to one query will affect the

approximations for other queries. Put simply, the amortized inference engine learns to infer: it generalizes

from past experience to efficiently compute the approximate posterior conditional on new data.

Theoptimizationproblem in the amortized setting is somewhat different from the classical setting. This

is because we now have to think about a distribution of queries, P(q). One way to formalize this problem
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(a) Memoryless inference (b) Amortized inference

(c) Learned Inference Model with 1 hidden unit (d) Learned Inference Model with 5 hidden units

Figure 7.1: Schematics of different inference methods. (A) Memoryless inference recomputes the variational parameters
φ from scratch for each new set of observations, resulting in an approximate posterior Qφ that is unique for each d. (B)
Amortized inference allows some variational parameters to be shared across queries, optimizing them such thatQφ is a good
approximation in expectation over the query distribution. (C) Schematic of how we implemented this framework with a neural
network function approximator in the Learned Inference Model, with low capacity (1 hidden unit). (D) Schematic of a neural
network function approximator in the Learned Inference Model, with high capacity (5 hidden units).
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(a) True posterior P (b) Approximate posterior Q (c) KL[Q||P]

Figure 7.2: Schematic demonstration of how the approximate posterior depends on the query distribution. (A) The true
posterior probability P (indicated by colors on the heatmap), as a function of the prior and likelihood for a generative model
in which h ∼ Bernoulli(p0) and d|h ∼ Bernoulli(pl). The contour lines depict the query distribution. (B) The approximate
posterior Q computed by the Learned Inference Model, averaged over the query distribution. The approximation is better for
areas that are sufficiently covered by the query distribution. (C) The average KL divergence between the true and approximate
posteriors. Higher divergence occurs in areas that are covered less by the query distribution.

is to define it as an expectation under the query distribution Pquery(d):

φ∗ = argmin
φ∈Φ

EPquery

{
D[Qφ(h|d)||P(h|d)]

}
(7.9)

Under this objective function, high probability queries will exert a stronger influence on the variational

parameters (see Figure 7.2 for an illustration). Note thatPquery(d)neednot be identical to the truemarginal

probability of the data under the data-generating process,P(d). For example, a childmight ask you a series

of questions about the reproductive habits of squirrels, but observations of these habits might be rare in

your experience.

It is important to note that classical (non-amortized) approximate inference is a special case of amor-

tized inference, and if there are no constraints on the amortization architecture, then the optimal architec-

ture will not do any amortization. This means that amortization only becomes relevant when there are

computational constraints that force sharing of variational parameters—i.e., limitations on the function

approximator’s capacity. A key part of our argument is that the brain’s inference engine operates under

such constraints see 111,5, which will produce the kinds of inferential errors we wish to explain.

144



7.3.3 The Learned Inference Model

We implement a specific version of this general framework, which we refer to as the Learned Inference

Model (LIM).Thismodel uses a three-layer feedforwardneural network as the function approximator (see

Figure 7.1 C-D, further details can be found in Appendix A.2). The inputs are all the relevant information

about the query subsumed by the data variable d, and the outputs uniquely determine an approximate

distribution Qφ(h|d) over all hypotheses h. For example, if we want to model the posterior distribution

P(h|d) as a Bernoulli distribution over two hypotheses, then the inputs are the prior probabilities of the

two hypotheses, the likelihood parameters, and observed data, while the output is a Bernoulli parameter

that represents the approximate posterior. The same parameters of the network φ are used to generate the

approximate distributionsQφ(h|d) for all queries d (i.e., the approximation is amortized; Figure 7.1 A-B).

The network encounters a series of queries d and outputs a guess forQφ(h|d). This guess is improved in

response to each newd,with updates to the network parameters φ. This leads to query dependence (Figure

7.2) in the learned parameters φ, and therefore in the approximationQφ(h|d). The updates to φ are made

using an algorithm that performs that performs the optimization in Equation 7.9 using knowledge only of

the joint distribution as a learning signal (see Ranganath et al. 360 , also discussed in Chapter 3, for details).

Since the joint distribution is known, no external feedback is necessary for learning.

These implementational details were chosen for simplicity and tractability. Becausemany other choices

would produce similar results, we will not make a strong argument in favor of this particular implementa-

tion. For our purposes, a neural network is just a learnable function approximator, utilizing the memory

of previously sampled experience to approximate future posteriors. Several other memory-based based

process models for probability judgment for example:92,411,74,437,205 could also learn to infer. Nonetheless,

the implementation fulfills several intuitive desiderata for a psychological process model. First, feedfor-

ward neural networks have been widely used to model behavioral and neural phenomena. Most relevant

to the present approach is the work of Orhan & Ma 338 , who showed how generic neural networks could

be trained to implement probabilistic computation. These architectures can also act as universal function

approximators, allowing us to refrain from strong assumptions about the functional form of the inference

procedures it will learn, while simultaneously retaining reasonable generalization properties and protec-
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tion from too much overfitting, despite high expressivity489,324. Second, neural networks offer a natural

way to specify the computational bottleneck in terms of a convergent pathway (the number of hidden

units is smaller than the number of input units)*. Such convergence has played an important role in the-

orizing about other forms of cognitive bottlenecks e.g., 111,5. Third, the learning rule (blackbox variational

inference) can be applied incrementally, and does not require knowledge of the posterior normalizing con-

stant, making it cognitively plausible. Fourth, as we discuss later, the model can be naturally integrated

with Monte Carlo sampling accounts of approximate inference.

All model parameters (number of hidden units in the bottleneck, the architecture of the network, prop-

erties of the optimization algorithm, etc.) are fixed across almost all the experiments (see Appendix A.2 for

details); any exceptions are noted where relevant. All the key predictions our model makes are qualitative

in nature, and do not require fitting of free parameters to empirical results.

7.4 Understanding under-reaction

We now apply the Learned Inference Model to our motivating question: what is the origin of under-

reaction to prior probabilities and evidence? We argue that these inferential errors arise from an amortized

posterior approximation. There are two key elements of this explanation. First, the amortized approxi-

mation has limited capacity: it can only accurately approximate a restricted set of posteriors, due to the

fact that the approximation architecture has a computational bottleneck (in our case, a fixed number of

units in the hidden layer). We will see how this leads to overall under-reaction to both priors and evidence.

Second, the particular posteriors that can be accurately approximated are those that have high probability

under the query distribution. Wewill see how this leads to differential under-reaction to either prior or ev-

idence. In this section, we will focus on the first element (limited capacity), since most of the experiments

that we focus on use near-uniform query distributions. We address the second element (dependence on

*In this parallel, the network in our LIM is not intended to represent an actual network of neurons in the brain
per se, and the convergent bottlenecks induced are not intended as a literal number of neurons in a natural neural
network. Real networks in the brain receive information in much higher dimensional format, where the relevant
variables are yet to be isolated. Further, they have to cope with noise on these inputs, in the learning signal, and the
even the neurons themselves are stochastic. Our model is a highly idealized version of the computations underlying
probabilistic judgment, and specifics like the number of units in the bottleneck or the number of layers etc. cannot
be directly compared to biologically realistic analogs.
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the query distribution) in subsequent sections.

Benjamin 25 presented a meta-analysis of studies using the classical balls-in-urns setup, or similar setups

(e.g., poker chips in bags). For simplicity, we will use the ball-in-urns setup to describe all of these studies.

Subjects are informed that there are two urns (denoted R and B) filled with some mixture of blue and red

balls. On each trial, an urnh is selected based on its prior probabilityP(h), and then a data setd = (Nr,Nb)

of Nr red balls and Nb blue balls is drawn from P(d|h) by sampling N = Nr + Nb balls with replacement

from urn h. The subject’s task is to judge the posterior probability of urn R, P(h = R|d). Urn R contains

mostly red balls (red-dominant), and the urn B contains mostly blue balls (blue-dominant). Following

Benjamin 25 , we focus on symmetric problems, where the proportion of the dominant color in both urns is

denoted by θ, which is always greater than 0.5. We can also interpret θ as the diagnosticity of the likelihood:

when θ is large, the urns are easier to tell apart based on a finite sample of balls.

In formalizing amodel for subjective performance on this task, Benjamin 25 follows Grether 175 in allow-

ing separate parameters for sensitivity to the likelihood and the prior (Eq. 7.5). For analytical convenience,

this model can be reformulated as linear in log-odds:

log
P(h = R|d)
P(h = B|d)

= αP log
P(h = R)
P(h = B)

+ αL log
P(d|h = R)
P(d|h = B)

+ ε, (7.10)

where we have included a random response error term ε. This formulation allows us to obtain maximum

likelihood estimates α̂P and α̂L using least squares linear regression applied to subjective probability judg-

ments (transformed to the log-odds scale). Benjamin 25 first restricted the meta-analyses to studies with

equal prior probabilities across the hypotheses, such that αP is irrelevant. The estimates of αL revealed

three main findings: (i) Under-reaction to the likelihood is more prevalent (α̂L < 1); (ii) the extent of

under-reaction to the likelihood is greater (α̂L is lower) with larger sample size (highN); and (iii) the extent

of under-reaction is greater with higher diagnosticity (higher θ) of the likelihood.

We investigated whether the Learned Inference Model can capture these findings. For each experimen-

tal condition, collected from 15 experiments, we trained themodel with 2 hidden units on the same stimuli

presented to subjects. The conditions varied in likelihood diagnosticity (θ) and sample size (N). We addi-

tionally include some uniformly random sample sizes and diagnosticities in training as a proxy for subjects’
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Figure 7.4: Simulation of inferential errors in binary symmetric problems with non-uniform priors. P(h|d) represents
true posterior probabilities, Q(h|d) represents subjective posterior probabilities. Plots show prior log-odds on the x axis, and
the subjective prior log-odds calculated as the subjective posterior log-odds adjusted for subjective response to the likelihood
(as modulated by α̂L). (A) Data aggregated by Benjamin 25 . (B) Simulation with low-capacity (2 hidden nodes) Learned
Inference Model. (C) Simulation with high-capacity (8 hidden nodes) Learned Inference Model. The shaded curves show the
linear and nonlinear (LOESS) regression functions with 95% confidence bands.

ability to simulate other possible values for these query parameters, apart from the small set of specific ones

chosen by the experimenters*. We found that the Learned Inference Model could successfully reproduce

the 3 main findings from the Benjamin 25 meta-analysis (Figure 7.3).

We also applied the model to experiments in which the prior distribution was non-uniform (deviated

substantially from 0.5). Figure 7.4 shows data aggregated by Benjamin 25 along with model simulations,

demonstrating that both people and the model tend to be insufficiently sensitive to the prior odds (α̂P <

1), consistent with base rate neglect.

We have shown that several of the main findings in the Benjamin 25 meta-analysis of inferential errors

can be reproduced by the Learned Inference Model with limited capacity. We now build an intuition for

how themodel explains these phenomena. The key idea is that limited capacity forces themodel to sacrifice

some fidelity to the posterior, producing degeneracy: some inputs map to the same outputs see 297 for a

*Crucially however, the stimuli actually used in the experiment are much better represented in the query dis-
tribution during training – leading to differences in the predictions made by the Learned Inference Models trained
on different query distributions from each experiment. The uniformly random inputs primarily serve to add some
noise to prevent the Learned InferenceModel from overfitting in cases where the experimental stimuli only query a
very small number of unique sample sizes and diagnosticities.
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similar argument. This degeneracy can be seen in Figure 7.3, where posterior log-odds greater than +5 or

less than -5 are mapped to almost the same approximate log-odds value. Degeneracy causes under-reaction

overall to sources of information (like sample size, prior and likelihood). It also causes the approximate

posteriors at extreme log-odds to suffer relatively greater deviations from the true posterior, in particular

greater under-reaction to sources of information when the log-odds are extreme (e.g., with larger sample

sizes and more diagnostic likelihoods). Intuitively, degeneracy causes the model to have a relatively flat

response as a function of the posterior log-odds, which means that deviations will also increase with the

posterior log-odds.
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To demonstrate that these biases in our model are indeed caused by limited capacity in the network, we

repeated the same simulations with greater capacity (8 hidden units instead of 2). In this case, we found

that the approximate posterior mapped almost exactly to the true posterior (Figure 7.5A, left). Estimated

sensitivity to the likelihood (α̂L) across all diagnosticities and sample sizes was very close to the Bayesian

optimal of 1 (Figure 7.5Amiddle and right). We also found that higher capacity mostly abolished base rate

neglect (Figure 7.4C).

What information is lost by a limited capacity approximation depends on the query distribution. To

examine this point more closely, we simulated the Learned Inference Model (with 2 hidden units) trained

on a biased query distribution, where the likelihood parameters, prior probabilities and sample sizes were

the same as used in training previously, but the queries were manipulated such that 90% of the time the

datawere uninformative aboutwhich urn ismore likely—i.e., the difference in the number of red and blue

ballswas close to zero. Thequery distribution therefore is very peaked around zero likelihood log-odds. We

then tested themodel on the same queries simulated in Figure 7.3. As shown in the left panel of Figure 7.5B

(note the change in y axis scale), the approximation is still close to Bayes-optimal near zero posterior log-

odds, but the extent of degeneracy is overall far greater, with all the true posterior log-odds being mapped

to approximate posterior log-odds roughly between -1 and +1. This results inmuch greater under-reaction

overall. This is also reflected in Figure 7.5B, middle and right, where the estimated sensitivity α̂L is closer

to zero.

7.4.1 The effect of sample size

In this section, we consider the effect of sample size on the posterior distribution in greater detail, keeping

the prior and likelihood parameters fixed. The most systematic investigation of sample size was reported

byGriffin&Tversky 176 , who suggested a specific decomposition of the posterior log-odds into the strength

(sample proportion) and the weight (sample size) of the evidence. These are two sources of information

that inform the posterior, and we can consider how strongly participants react to these the same way we

consider their reactions to the prior and evidence in the previous section.

In one of their studies, they gave subjects the following instructions:
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Number of heads (h) Sample size (n)

2 3
3 3
3 5
4 5
5 5
5 9
6 9
7 9
9 17
10 17
11 17
19 33

Table 7.1: Stimuli used in Griffin & Tversky 176 .

Imagine that you are spinning a coin, and recording how often the coin lands heads and
how often the coin lands tails. Unlike tossing, which (on average) yields an equal number of
heads and tails, spinning a coin leads to a bias favoring one side or the other because of slight
imperfections on the rim of the coin (and an uneven distribution of mass). Now imagine
that you know that this bias is 3/5. It tends to land on one side 3 out of 5 times. But you do
not know if this bias is in favor of heads or in favor of tails.

After being shown different sets of coin “spin” results that varied in the number of total spins and the

number of observed heads (see Table 7.1), subjects were then asked to judge the posterior probability that

the coin was biased towards heads rather than towards tails.

The two hypotheses in this task were that the biased coin either favors heads (denoted h = A) or that

it favors tails (denoted h = B). The prior probabilities of both hypotheses were equal. The symmetric

binomial probability was fixed at θ = 3/5, and the observed data d = (Na,Nb) is the number of heads

(Na) and number of tails Nb. The posterior log-odds can then be written as:

log
P(h = A|d)
P(h = B|d)

= N
(
Na − Nb

N

)
log
(

θ
1− θ

)
, (7.11)

where N = Na + Nb. Taking the log of this equation results in a linear function relating the log of the

posterior log-odds to evidence “strength” log
(
Na−Nb

N

)
and “weight” logN. Following Grether 175 , Griffin
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& Tversky 176 allowed each component to be weighted by a coefficient (αW for evidence weight, αS for

evidence strength), absorbed all constants into a fixed intercept term α0 = log log
(

θ
1−θ

)
, and allowed for

random response error ε, arriving at the following regression model:

log
(
log

P(h = A|d)
P(h = B|d)

)
= α0 + αW log(N) + αS log

(
Na − Nb

N

)
+ ε. (7.12)

The Bayes-optimal parametrization is αW = αS = 1. However, Griffin & Tversky 176 found that both

αW and αS significantly smaller than 1. Furthermore, subjects tended to be less sensitive to the weight

(α̂W = 0.31) compared to the strength (α̂S = 0.81).

We now turn to predictions from the Learned Inference Model. The actual stimuli presented to sub-

jects in the original experiment were only a small subset of the possible data from the generative model

implied by the instructions. Similarly to the previous section, we partially pre-trained the network with

random samples from the generative model as follows: we sample the sample sizes from the set of stimuli

used in the original experiment (Table 7.1), but did not fix the number of observed heads, which we sam-

pled randomly from the generative distribution instead. This can be thought of as offline training on the

generative process, which seems plausible based on the instructions given to the subjects, ans serves to reg-

ularize the Learned InferenceModel by preventing overfitting. We then trained exclusively on the specific

stimuli used in the original experiment, and carried out our analyses on themodel’s response to each query

in Table 7.1.

Consistent with the experimental results, we found that the model was sub-optimally sensitive to both

sources of information (Figure 7.6), with both α̂S and α̂W being less than 1. We also found that it wasmore

sensitive to the strength than the weight (α̂S = 0.67, α̂W = 0.48).

Greater sensitivity to strength than to weight in ourmodel can be explained by considering the amount

of variance explained by each of these variables. We took random samples from the generative model and

measured how much of the variance in the log of the true posterior log odds can be explained by the log

of the strength and the log of the weights separately. We found that the strength variable explains more

of the variance in the true posterior than the weight variable (Figure 7.7A). A resource-limited approxima-

tion such as our Learned InferenceModel picks up on this difference during pre-training and preferentially
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Figure 7.6: Strength and weight in probabilistic judgment. (A) Regression coefficients reported in Griffin & Tversky 176 . (B)
Regression coefficients estimated from simulations of the Learned Inference Model. Error bars represent the standard error
of the mean.

attends to themore informative source (i.e., the one that explains more of the variance). Moreover, we car-

ried out these regressionswith the specific stimuli used in the the experiment and found that this difference

was exaggerated (Figure 7.7B), with the weight variable explaining very little of the variance in the true pos-

teriors. Training and evaluation on a distribution where the weight explains so little of the variance in the

posterior leads the model to react to the weight even less.

7.4.2 Manipulating the query distribution

In this section, we focus more directly on the role of the query distribution. A basic prediction of our

model is that it will put more weight on either the prior or the likelihood, depending on which of the two

has beenhistoricallymore informative about the true posterior. We test this prediction empirically in a new

experiment by manipulating the informativeness of the prior and the likelihood during a learning phase,

in an effort to elicit over- and under-reaction to data in a subsequent test phase that is fixed across exper-

imental conditions. Specifically, informativeness was manipulated through the diagnosticity of different

information sources. In the informative prior/uninformative likelihood condition, the prior probabilities

were more diagnostic across queries than the likelihoods, whereas in the uninformative prior/informative

likelihood condition, the likelihoods were relatively more diagnostic.
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(a) (b)

Figure 7.7: Variance explained by strength and weight independently. These plots show regressions between the log of the
strength or weight of the evidence against the log of the posterior log-odds. (A) For samples drawn from the true generative
process, the strength explains more variance in the posterior. (B) For the stimuli used in Griffin & Tversky 176 , the weight
explains almost none of the variance in the log posterior log-odds, whereas the strength explains a much higher amount of the
variance.

Subjects

We recruited 201 subjects (93 females, mean age=34.17, SD=8.39) on Amazon Mechanical Turk. Subjects

were required to have at least 100 past completed studies with a historical completion rate of 99%. The

experiment took 12 minutes on average and subjects were paid $ 2 for their participation. The experiment

was approved by the Harvard Institutional Review Board.

Design and procedure

Subjects were told they would play 10 games with 10 trials each, in which they had to guess from which of

two urns a ball was sampled (i.e., which urn was more probable a posteriori). On every round, they saw

a wheel of fortune and two urns (Figure 7.8). They were then told that the game was played by another

person spinning the wheel of fortune, selecting the resulting urn, and then randomly sampling a ball from

the selected urn. The wheel of fortune thus corresponded to the prior and the balls in the urns to the

likelihood on each trial. Subjects were told that each trial was independent of all other trials.
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Figure 7.8: Screen shots of urn experiment. (A) In the condition with informative priors and uninformative likelihoods, the
wheel of fortune had urn probabilities of 0.7, 0.8, or 0.9. The proportions of blue balls in the urns was 0.5 or 0.6. (B) In the
condition with uninformative priors and informative likelihoods, the wheel of fortune had urn probabilities of 0.5 or 0.6. The
proportions of blue balls in the urns was 0.7, 0.8, or 0.9.
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Subjects were randomly assigned to one of two between-subjects conditions. One group of subjects

went through 8 blocks of 10 trials each with informative priors and uninformative likelihoods (Figure

7.8A); the other groupwent through 8 blocks of informative likelihoods and uninformative priors (Figure

7.8B). We manipulated the prior distribution by changing the number of options on the wheel labeled

“left” or “right”. We manipulated the likelihood by changing the proportions of two different colors in

both the left and the right urn. Both urns always contained 10 balls of the same colors and the proportion

of colors was always exactly mirrored. For example, if the left urn had 8 red balls and 2 blue balls, then the

right urn had 2 red and 8 blue balls. For the informative prior/uninformative likelihood condition, the

wheel of fortune had urn probabilities (and diagnosticities θ) of 0.7, 0.8, or 0.9, and the proportions of

blue balls in the urns was 0.5 or 0.6. For the uninformative prior/informative likelihood condition, the

wheel of fortune had urn probabilities of 0.5 or 0.6, and the proportions of blue balls in the urns was 0.7,

0.8, or 0.9.

After the first 8 blocks, both groups of subjects went through the same test blocks. Each test block had

either informative priors or informative likelihoods, with their order determined at random. We hypoth-

esized that, if subjects learned to infer the posterior based on their experience during the training blocks,

subjects who had experienced informative likelihoods would be more sensitive to the likelihood than sub-

jects who had experienced informative priors, who would be relatively more sensitive to the prior.

Behavioral results

We fitted a regression to subjects’ responses (transformed to log-odds) during the test blocks following

Eq. 7.10. Thus, we entered the log-odds of the prior, the log-odds of the likelihood, the condition (coded

as ‘0’ for the informative prior condition, and ‘1’ for the informative likelihood condition), as well as an

interaction effect between condition and likelihood and between condition and prior.

As expected, subjects’ judgments were influenced by both the prior (αP = 0.77, t = 27.529, p <

.001) and the likelihood (αL = 0.92, t = 32.68, p < .001), indicating that they understand the key

components of the generative process and therefore recognize and represent both of these as relevant to

their final judgment. Crucially, subjects who had previously experienced informative priors reacted more
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Figure 7.9: Results of urn experiment. The y-axis shows estimates for the regression coefficients αL and αP (see Equation
7.10), and the x-axis represents the experimental condition. (A) Subjects weighted the prior more in the informative prior
than in the informative likelihood condition. (B) Subjects weighted the likelihood more in the informative likelihood than in
the informative prior condition. (C) The Learned Inference Model weights the prior more in the informative prior condition
as compared to in the informative likelihood condition. (D) The Learned Inference Model weights the likelihood more in the
informative likelihood condition as compared in the informative prior condition. Error bars represent the standard errors of the
regression coefficients.
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strongly towards the prior than subjects who had experienced informative likelihoods (interaction effect

of condition × αP = 0.10,t = 2.44, p = .01, Figure 7.9A). Vice versa, subjects who had previously

experienced informative likelihoods reacted more strongly towards the likelihoods than subjects who had

experienced informative priors (interaction effect of condition × αL = −0.22, t = −5.31, p < .001,

Figure 7.9B). Furthermore, when estimating individual regressions for both conditions, the reaction to the

prior was stronger than the reaction to the likelihood in the informative prior condition (α̂P = 0.88 vs.

α̂L = 0.70, p < .001), whereas the reverse was true for the informative likelihood condition (α̂P = 0.78

vs. α̂L = 0.92, p < .001).

Modeling results

We trained the Learned InferenceModel to predict the posterior probability for each of the twourns, given

the prior probability for each urn and the ratio of colored balls in each of the urns, and the color of the

observed ball. We trained 40 different “simulated subjects”, 20 in each condition, each of which observed

exactly the data that a subject in their condition had seen, and then tested them on the same test blocks

that human subjects went through. We applied the same regression to our Learned InferenceModel’s judg-

ments that we applied to subject data. Our Learned Inference Model’s judgments were significantly influ-

enced by both the prior (αP = 0.27, t = 41.41, p < .001) and the likelihood (αL = 0.69, t = 104.98,

p < .001). Importantly, the simulated subjects in the informative prior condition reacted more strongly

toward the prior (interaction effect condition× αP = 0.60, t = 64.83, p < .001, Figure 7.9C), whereas

the simulated subjects in the informative likelihood condition reactedmore strongly toward the likelihood

(interaction effect of condition× αL = −0.41, t = −44.27, p < .001, Figure 7.9D). Estimating individ-

ual regressions for both conditions as before, the reaction to the prior was higher than the reaction to the

likelihood in the informative prior condition (α̂P = 0.80 vs. α̂L = 0.21, p < .001), whereas the reverse

was true for the informative likelihood condition (α̂P = 0.29 vs. α̂L = 0.71, p < .001). Our Learned

Inference Model therefore reproduces the behavioral findings observed in our experiment.
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7.4.3 Manipulating the query distribution between vs. within subjects

The study reported in the previous section demonstrates that theweight of an information source (prior or

likelihood) is correlated with its diagnosticity. An additional implication of the Learned Inference Model

is that peoplewill only be sensitive to the prior and likelihood if these parameters vary across queries during

training of the recognition model. If the parameters are relatively constant (even if very diagnostic), then

the recognitionmodelwill learn to “ignore” them. Moreprecisely, the recognitionmodel learns to amortize

a fixed belief about the priors when they are held constant, and therefore will be relatively insensitive to

surprising changes in the prior. This implication is relevant to a line of argument articulated byKoehler 248 ,

that base rates are only ignored when they are manipulated between rather than within subjects.

Several lines of evidence support Koehler’s argument. Fischhoff et al. 119 found greater sensitivity to base

rates using a within-subject design, and similar results have been reported by Birnbaum & Mellers 32 and

Schwarz et al. 404 , though see Dawes et al. 79 for evidence that base rate neglect occurs even using within-

subject designs. Ajzen 4 pointed out an asymmetry in the experiments of Kahneman&Tversky 234 , where

individuating information was manipulated within subject and base rates were manipulated between sub-

jects. He suggested that this may have focused subjects’ attention on individuating information at the

expense of base rates. Using a full between-subjects design, Ajzen 4 found greater sensitivity to base rates,

consistent with a reduction in the relative salience of individuating information compared to the mixed

within/between-subject design.

For concreteness, we will consider this issue in the context of the well-known taxi cab problem, where

subjects were asked to answer the following question:

Two cab companies, the Blue and the Green, operate in a given city. Eighty-five percent of
the cabs in the city are Blue; the remaining fifteen percent are Green. A cabwas involved in a
hit-and-run accident at night. A witness identified the cab as a Green cab. The court tested
the witness’ ability to distinguish a Blue cab from aGreen cab at night by presenting to him
film sequences, half of which depicted Blue cabs, and half depicting Green cabs. He was
able to make correct identification in 8 out of 10 tries. He made one error on each color of
cab. What do you think is the probability (expressed as a percentage) that the cab involved
in this accident was Green?

Note that the prior in this case is fairly diagnostic: it strongly favors Blue cabs. However, several studies
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Figure 7.10: Base rate neglect within and between subjects. The y-axis shows the reaction to the prior as measured in
predictions from the Learned Inference Model, the x-axis shows the different conditions. Reaction to the prior here is measured
by the difference between the responses given to test queries in which the base rate was 85% and those in which the base
rate was 15%. Thus, a greater difference indicates a stronger reaction to prior information. The model simulations of the
within-subjects design show a stronger reaction to the base rates than the simulations of the between-subjects design (which
shows no reaction to the base rate at all). Both of these conditions produce under-reaction to the base rate compared to the
Bayes-optimal judgment.

of the taxi-cab and similar problems produced evidence for base rate neglect456,12,285. These studies manip-

ulated the base rates in a between-subject design. In the taxi cab problem, this corresponds to telling one

group of subjects that 85% of the cabs are Blue and telling another that 85% are Green. Therefore, while

the prior information is diagnostic, as it appears to each subject, it never varies.

Asmentioned above, Fischhoff et al. 119 found greater base rate sensitivity using a within-subject manip-

ulation of base rates in the taxi cab problem. Each subject was given two different base rates for the cab

problem. We simulate the condition inwhich the base rates were either 85% or 15%. The Learned Inference

Model reproduces the key finding of greater sensitivity to base rates using a within-subject design (Figure

7.10). In fact, the model exhibits total neglect of base rates in the between-subjects design, consistent with

previous findings reported by Lyon & Slovic 285 , though not all experiments show such extreme results.*

*The assumption that these are the only queries ever seen by participants would result in no covariance between
prior andposterior in thebetween-subject design (since theprior never varies). Thiswould give total base-rate neglect.
This is an extreme assumption we make for illustrative purposes. More realistically, observing these queries simply
concentrates the query distribution in this space and reduces covariance between the prior and the posterior.

161



The Learned Inference Model naturally explains the difference between experimental designs as a conse-

quence of the fact that limited capacity and biased query distributions cause the model to ignore sources

of information that do not reliably covary with the posterior.

The differences in historical query distributions for each subject as determined by the experimental de-

sign also sheds light on discrepancies in the effects of diagnosticity on the extent of under-reaction. Studies

that find that reactions to a source of information are stronger with increasing relative diagnosticity 12,117,333

of that source of information, used between-subject designs. This is analogous to our study in which sub-

jects “attend”more to a source that wasmore informative in the experienced query distribution, leading to

a stronger reaction to that source in future queries. However, studies reported in Benjamin 25 find greater

under-reaction with increasing diagnosticity (Figure 7.3). We note that these studies predominantly used

within-subject designs,* in which the same subject has to make inferences across all levels of diagnosticity.

This leads to a much broader query distribution, where no source has reliably higher diagnosticity. Im-

posing a limitation on the capacity of the approximation results in an inability to faithfully express this

broad query distribution, and some neglect of the specific parameters 297. This produces degeneracies in

the response thatmanifest as greater under-reaction tomore diagnostic sources of information. Ourmodel

therefore is able to replicate these seemingly contradictory findings, by taking into account the experienced

query distribution of each subject.

7.4.4 Extension to a continuous domain

In this section, we investigate the effect of informativeness in a continuous domain, re-analyzing a data

set reported by Gershman 137 . Subjects (N = 117) were recruited through Amazon Mechanical Turk to

take part in an experiment in which they had to predict the pay-off of different slot machines. In total,

they were shown 10 different slot machines and had to make 10 guesses per slot machine. Pay-offs varied

between 0 and 100 and were noisy such that no slot machine gave the same pay-off every time. Subjects

were assigned randomly to one of two groups in a between-subjects design. Eachmachine kwas associated

with a Gaussian distributionN (mk, s) over outputs ykn on each trial n. The variance swas fixed to 25 and

*Two exceptions to this pattern are Sasaki & Kawagoe 396 and Beach et al. 19 .
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the mean was drawn from a normal distribution N (m0, v), with m0 set to 40 and the global variance v

manipulated between groups. One group, in the low dispersion condition, experienced a global variance

of v = 36. The other group, in the high dispersion condition, experienced a global variance of v = 144.

Gershman 137 used this paradigm to show how manipulating the dispersion produced faster or slower

acquisition of abstract knowledge; we focus on a different aspect of the data here: subjects updating be-

havior. Figure 7.11A shows subjects’ reaction to the incoming data, quantified as how much they update

their predictions after observing a slot machine’s output, plotted against the predicted update of a rational

hierarchical model inferring the posterior mean payoffs for a machine.* Subjects’ updates are positively

correlated with the model’s predicted updates for both the high dispersion (r(99) = 0.57, p < .001)

and the low dispersion condition (r(116) = 0.36, p < .001). This is expected as the hierarchical model

is assumed to be a good first approximation of human behavior in this task. However, subjects updated

their beliefs much more in the high dispersion than in the low dispersion condition – even for the same

rational update (t(214) = 9.24, p < .001, after accounting for differences in rational updates between

the conditions). This means that they were affected more strongly by the same incoming evidence in the

high dispersion than in the low dispersion condition. As the higher dispersion group experienced a higher

global variance, this also means that they experienced a less informative prior. Thus, the fact that they

under-reacted to the prior when it is relatively less informative reproduces the effect observed in our urn

experiment in a continuous domain.

To simulate these findings, we parametrized the outputs of the Learned Inference Model to return the

mean and log standarddeviationof aGaussianposterior. The function approximatorwas aneural network

with a single two-unit hidden layer and a tanh non-linearity, taking as input the last observation, the mean

of the observations seen so far in that episode and the number of observations in that episode. We trained

the model on the same generative process as was applied in the behavioral study. We then use the model’s

predicted mean as the response on every trial.

*This rational hierarchical model is assumed to know the true parameter values for s, v and m0. However, in
this experiment, these parameters for the full data-generating process were not explicitly shown to participants. We
therefore also carry out an analysis using a hierarchical Bayesian model that additionally also infers these parameter
values. This leads to similar results; see Appendix A.3 for details.
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(b) Simulation results

Figure 7.11: Inferential errors in a continuous domain. (A) Reanalysis of data from the payoff prediction task collected by
Gershman 137 . (B) Simulations of the Learned Inference Model. Each panel shows subjective updates from prior to posterior
(ΔData) on the y-axis and the update of a rational (hierarchical) model (ΔRational) on the x-axis. Error bars represent the
standard error of the mean. Gray lines represent y = x.

The results, shown in Figure 7.11B, demonstrate that the model qualitatively matches the human data:

a positive correlation between the hierarchical model’s predictions and our Learned Inference Model’s

responses for both the low dispersion (r(19) = 0.82, p < .001) and the high dispersion condition

(r(19) = 0.82, p < .001), but critically the update was stronger for the high dispersion condition than

for the low dispersion condition (t(38) = 7.40, p < .001).

A discrepancy in the behavior of our model and the human data can be seen for large updates, where

the model predictions flatten out significantly compared to human data. This is due to the degeneracy

caused by limited capacity (see also figures 7.3 and 7.5). Different architectures and ways to parametrize

the approximate distributionQwould lead to different kinds of degeneracies and might better model this

aspect of the human data. Nonetheless, the effect we are primarily interested in in this study is that the

updates in the high dispersion condition are greater than in the low dispersion condition (for both our

model and the human data), for every value of the true Bayesian update. This validates our claim that

reaction to data depends on the relative informativeness of the prior and the likelihood in past queries.

This claim applies to both discrete and continuous domains.
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7.5 Further evidence for amortization: belief bias and memory effects

We now shift from our analysis of under-reaction to a broader evaluation of the Learned InferenceModel,

focusing on two predictions. First, the model predicts that the accuracy of human probabilistic judgment

will depend not only on the “syntax” of the inference engine (how accurately the inference engine ma-

nipulates probabilistic information) but also on the “semantics” (how well the probabilistic information

corresponds to prior experience and knowledge). The semantic dependence gives rise to a form of belief

bias, in which people are more accurate when asked to make judgments about “believable” probabilistic

information compared to “unbelievable” information, even when the syntactic demands (i.e., Bayes’ rule)

are equated. Second, the model predicts that there will be memory effects (sequential dependencies): one

probabilistic judgment may influence a subsequent judgment even when the two queries are different.

7.5.1 Belief bias

In studies of deductive reasoning, people appear to be influenced by their prior beliefs in ways that some-

times conflict with logical validity. Specifically, they tend to endorse arguments whose conclusions are

believable, and reject arguments whose conclusions are unbelievable, regardless of the arguments’ logical

validity e.g., 107,323,329,220. This belief bias phenomenon has played a pivotal role in adjudicating between

theories of logical reasoning.

Belief bias has also been observed in probabilistic reasoning tasks 109,64. Here we focus on the study

reported by Cohen et al. 64 , which varied whether the posterior probabilities dictated by Bayes’ rule were

close to independently measured intuitive estimates of the corresponding real-world probabilities. Sub-

jects were asked to performBayesian reasoning in real-world situations (e.g., medical diagnosis), with prior

and likelihood information that was either consistent with (believable condition), or inconsistent with

(unbelievable condition) observed real-world values. The authors found that subjects’ responses corre-

lated well with Bayesian posterior probabilities in the believable condition (Figure 7.12A), and were much

less correlated in the unbelievable condition (Figure 7.12B).

An intuitive interpretation for these results is that people anchor to the experienced real-world values of
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the prior, likelihood, and resulting posterior, and adjust their computations inadequately to the parame-

ters actually presented in the query. The final responses are therefore closer to the true posterior when this

anchor is close to the experimental parameters presented, as in the believable condition. Anchoring has pre-

viously beenmodeled as the outcome of a resource-limited sampling algorithms73,275, but has usually been

studied in cases where the anchor is explicitly provided in the experimental prompt. Learned inference

strategies account formemory of previous queries, and provide amodel for what such an anchor for a new

query could be, in the form of an a priori guess based on relevant past judgment experience. This interpre-

tation of learned inference as augmenting or anchoring other run-time approximate inference strategies is

discussed in greater detail in the section on Amortization as Regularization.

We model these effects by training the Learned Inference Model on a set of priors and likelihoods that

result in a particular posterior distribution, PA, and testing on a set of priors and likelihoods that result

in posterior probabilities that either have the same distribution PA (believable condition) or a different

distribution PB (unbelievable condition)*. The model produces responses that are highly correlated with

the true posterior probability in the believable condition (Figure 7.12C, r = 0.78, p < .001), but this

correlation is much lower in the unbelievable condition (Figure 7.12D, r = 0.14, p = .06, comparative

test: z = 2.64, p = .004). Our model therefore reproduces the belief bias effect reported by Cohen

et al. 64 .

7.5.2 Memory effects

In our own previous work74, we observed signatures of amortized inference in subjects’ probability es-

timates. One such signature was that their answers to a question (Q2) were predictably biased by their

answers to a previous question (Q1). This bias was stronger in cases were the two queries were more simi-

lar.

*Each simulated subject received a training distribution where the posterior probabilities were distributed ac-
cording to themixture distributionPA = 0.5×Beta(3, 1)+0.5×Beta(1, 1). Simulated subjects in the believable
condition were tested on posteriors sampled from the same distribution, those in the unbelievable condition were
tests on posteriors sampled from themixture distributionPB = 0.5×Beta(1, 3)+0.5×Beta(1, 1). An equal num-
ber of simulated subjects receivedPB as the training distribution (withPA as the test distribution in the unbelievable
condition).
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Figure 7.12: Belief bias. Top: experimental data. Bottom: simulations of the Learned Inference Model. (A) Empirical results
for the believable condition 64. (B) Empirical results for the unbelievable condition. (C) Simulated results for the believable
condition. (D) Simulated results for the unbelievable condition. The correlation between the actual and estimated posterior is
closer to 1 (i.e., exact Bayesian inference) in the believable condition than in the unbelievable condition. The Learned Inference
Model reproduces this effect.

167



The experiments were carried out in the domain of scene statistics. We asked people to predict the

probability of the presence of a “query object”, given the presence of a “cue object” in a scene. The query

object was kept the same across both queries. In one condition, the cue object in Q1 was “similar” to the

one inQ2, measured by the KL divergence between the two posteriors over objects conditional on the cue

object. In the other condition, the cue object in Q2 was dissimilar from the one in Q1.

For example:

Q1: “Given the presence of a chair in a photo, what is the probability of there also being a painting, plant,

printer, or any other object starting with a P in that photo?”

Q2 (Similar): “Given the presence of a book in a photo, what is the probability there is any object starting

with a P in the photo?”

Q2 (Dissimilar): “Given the presence of a road in a photo, what is the probability there is any object start-

ing with a P in the photo?”

We biased the responses to Q1 for half the subjects using an unpacking manipulation, which produces

subadditivity of probability judgments. A subadditivity effect occurs when the perceived probability of a

hypothesis is higherwhen thehypothesis is ‘unpacked’ into adisjunctionofmultiple typical sub-hypotheses 122,461,73.

Using an example from our own work, when subjects were told that there was a “chair” in the scene, they

tended to assign higher probability to the ‘unpacked’ hypothesis “painting, plant, printer, or any other

object starting with a P”, than a control group who was asked about the ‘packed’ hypothesis “any object

starting with a P”. The true posterior is the same across these different conditions. Critically, we found

that the subadditivity group assigned higher probability to the hypothesis queried in Q2 than the control

group, holding fixed Q2 across groups. This means that the bias induced by Q1 was detectable in Q2, in-

dicating that some computations involved in answering Q1 were re-used to answer Q2. Importantly, we

found that this bias was only detectable if the cue objects acrossQ1 andQ2were similar (Figure 7.13A). For

example, first being askedQ1 about the probability of the set of “objects starting with a P” in the presence

of a “book”, and afterwards being asked Q2 about the probability of “objects starting with a P” in the

presence of a “chair” produced a memory effect whereas asking the same Q2 did not show this memory
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B: Simulated subadditivity effect

Figure 7.13: Memory effect. (A) Observed subadditivity effect in query 2 reported in Dasgupta et al. 74 . Cues that were similar
to a previous query showed a higher effect than cues that were less similar, indicating strategic reuse of past computation. (B)
Simulated subadditivity effect. Provided that the model was trained to exhibit a subadditivity effect in a first query, this effect
remained stronger for similar queries than for dissimilar queries. Error bars represent the standard error of the mean.

effect when subjects in Q1 were asked about the probability of the set of “objects starting with a P” in the

presence of a “road”. We argued that this was a sign of intelligent reuse of computation, since a chair is

more likely to co-occur in scenes with a book than in scenes with a road.

In Dasgupta et al. 74 , we modeled reuse using amortizations of samples in a Monte Carlo framework.

However, a basic problem facing this framework is that the Monte Carlo sampler cannot “know” about

similarity (measured in terms ofKLdivergence)without knowing the true posterior, which of course is the

entity it is trying to approximate. The Learned Inference Model provides an answer to this conundrum,

by adaptively amortizing (i.e., reusing) past computations without access to the KL divergence or other

omniscient similarity measures.

In the interest of simplicity, we simulate these effects in a smaller version of the original environment,

rather than using the full-scale scene statistics as in our original study74. We simulated a data set of scene

statistics with 12 objects with 2 different “topics” that drive the multinomial probability distributions over

these 12 objects 36. Using this setup, one can derive the joint probability of any 2 objects. The joint probabil-

ity is all that is required for blackbox variational inference 360, so we are able to train a larger version of the

Learned Inference Model (with 1 hidden layer, 10 hidden units and a radial basis function non-linearity),

which takes as input each object d (a 12-dimensional one-hot vector) and outputs the 12-dimensionalmulti-
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nomial probability distribution P(h|d) over all objects.

We then manipulated P(hi, d) for a specific cue object d and query object hi by biasing it to be higher

than its true value (analogous to the subadditivitymanipulation) and trained the Learned InferenceModel

with the biased joint distribution for a few steps. This caused the model to partially amortize Q1, which

in turn influenced its answer to Q2 (a memory-based subadditivity effect), since the same network was

used to answer both. Our simulations demonstrate that the subadditive effect is significantly larger for

similar compared to dissimilar cue objects (Figure 7.13B; t(58) = 4.62, p < .001). Our model there-

fore reproduces the difference in the memory effect reported by Dasgupta et al. 74 . Note however that

the simulations are carried out in a different generative model (i.e., a simplified version of the empirical

environment), and the sizes of the effects are not directly comparable.

Note that we did not attempt in this section tomore directly model subadditivity, as this would require

the introduction of additional mechanisms into our framework. Prior work by Dasgupta et al. 73 suggests

how Monte Carlo sampling naturally explains subadditivity. As we address further in the General Discus-

sion, there are a number of ways that the Monte Carlo and amortized variational inference frameworks

could be integrated.

7.6 Amortization as Regularization

We introduced amortization as a method for optimizing a function that maps queries to posterior distri-

butions. Another view of amortization is as a method for regularizing an estimator of the posterior distri-

bution for a single query. The intuition behind this is that one might have gained over experience some

knowledge of what the relevant task parameters and the resulting posteriors generally are, and use that to

regularize a noisy estimator for the posterior for a new query at run-time. At first glance, it may seem odd

to think about the variational optimization procedure as producing an estimator in the statistical sense,

since the posterior is a deterministic function of the query. To explain why this is in fact not odd, we need

to lay some groundwork.

An inference engine that is not bound by time, space or computational constraints will reliably output

the true posterior distribution, whereas a constrained inference engine will output an approximate poste-
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rior. There is no way for the constrained inference engine to know exactly how close its approximation is

to the true posterior. Another way of saying this is that the constrained inference engine has epistemic un-

certainty, even if the engine itself is completely deterministic and hence lacks any aleatory uncertainty (i.e.,

uncertainty arising from randomness).* We can thus regard the approximate posterior as an estimator of

the true posterior, and ask how we might improve it through the use of inductive biases: if we have some

prior knowledge about which posteriors are more likely than others, we can use this knowledge to bias the

estimator and thereby offset the effects of computational imprecision.

To formalize this idea in the context of amortized inference, the optimization problem in Eq. 7.9 can

be rewritten (up to an irrelevant constant factor) as follows:

φ∗ = argmin
φ∈Φ

[
D[Qφ(h|d)||P(h|d)] +

1
Pquery(d)

EPquery

{
D[Qφ(h|d′)||P(h|d′)]|d′ ̸= d

}]
. (7.13)

This expression separates a “focal” query d (the one you are trying to answer now) from the distribution

of other queries (d′ ̸= d). If the focal query is high probability, the second term counts less, and in the

limit disappears, such that the optimization problem reduces to fitting the variational parameters to the

focal query. When the focal query is lowprobability, the second term exerts a stronger influence, and in the

limit the optimization problem completely ignores the focal query. We can think of the second term as a

regularizer: it pulls the variational parameters towards values that work well (minimize divergence) under

the query distribution, and this pull is stronger when the focal query is low probability.

The regularization perspective allows us to connect our framework to the “correction prior” theory de-

veloped by Zhu et al. 492 . According to Zhu and colleagues, the brain approximates the posterior by gen-

erating stochastic hypothesis samples, and then “corrects” this approximation by regularizing it towards a

meta-Bayesian prior over posteriors see also 361. The theoretical motivation for correction is that the poste-

rior approximation is a random variable due to the stochastic sampling process; when only a few samples

are drawn cf.468,73 this produces a noisy estimate of the posterior that may deviate significantly from the

true posterior. The correction procedure reduces variance in the posterior estimate by increasing bias,

*Epistemic uncertainty due to computational imprecision has been studied systematically in the field of proba-
bilistic numerics 204.
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pulling it towards the meta-Bayesian prior over posteriors (intuitively, towards an ‘a priori’ guess based on

past experience), and therefore partially compensates for the error in the sampling process.

More formally, the stochastic hypothesis sampling procedure corresponds to a form of Monte Carlo

approximation (see Eq. 7.6). In the simple binary setting,H = {0, 1}, the Monte Carlo inference engine

generatesM samples from P(h|d)*. In our generic formalism, the approximate posterior is parametrized

by the proportion of “successes” φ = K/M, where K =
∑

m I[hm = 1]. The approximate posterior is

then given byQφ(h|d) = φh(1−φ)1−h. This approximation will exhibit large stochastic deviations from

the true posterior for smallM.†

To reduce the variance of theMonte Carlo estimator, Zhu et al. 492 proposed ameta-Bayesian inference

procedure that computes the posterior over the optimal parameters φ∗ given the “data” supplied by the

random variable φ:

P(φ∗|φ) ∝ P(φ|φ∗)P(φ∗). (7.14)

When the prior P(φ∗) is a Beta(A,B) distribution, the posterior mean estimator is given by:

E{φ∗|φ} = wφ+ (1− w)
A

A+ B
, (7.15)

where w = 1
M+A+B controls the balance between the Monte Carlo estimate φ and the prior mean A

A+B ,

which acts as a regularizer. Intuitively, a larger sample size (M) orweaker prior (A+B) shift the balance from

the prior to the Monte Carlo estimate. When A = B, as assumed in Zhu et al. 492 , the prior mean is 1/2.

This gives rise to a form of “conservatism” inwhich probabilities greater than 1/2 are underestimated, and

probabilities less than 1/2 are overestimated 103,209. We remind the reader that this form of conservatism is

distinct from the under-reaction that we modeled in previous sections, which is sometimes referred to as

*We assume for simplicity that the inference engine can directly sample from the posterior, though inmost cases
of practical interest the inference enginewill sample from a proxy distribution. For example, inMarkov chainMonte
Carlo schemes, the inference engine samples from aMarkov chainwhose stationary distribution is the posterior 73,149.

†The variance of the Monte Carlo estimator for a binomial distribution with success probability p is p(1 −
p)/M2.
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conservative probability updating99.

Zhu et al. 492 found evidence for such a “conservative” prior using two different data sets. The first one

was data collected by Costello et al. 68 , who asked subjects to estimate probabilities for a range of weather

events (e.g., cold, windy or sunny), or to estimate probabilities of future events (e.g., “Germany is in the

finals of the next World Cup.”). The second one was data collected by Stewart et al. 437 , who assessed

the variability of probability estimates for different phrases such as “improbably” or “quite likely”. The

sampling and correction prior model was able to quantitatively capture the observed conservatism effect:

people weighted their probability estimates towards 0.5 when providing their judgments (Figure 7.14A). It

also led to anovel prediction that the variance of probability estimates shouldbe aquadratic functionof the

true probability, with a peak at1/2. This predictionwas confirmed in the experimental data (Figure 7.14B).

We now show that we can capture the same behavioral phenomena (mean and variance effects) using

the Learned Inference Model. This analysis provides an important insight: the random nature of the ap-

proximate posterior is not necessary (as in the correction prior framework), and that regularization, which

can act even on deterministic approximations (provided these approximations are capacity limited as in

the Learned Inference Model), can explain the observed effects.

To simulate the experimental data, we created a query distribution that would give rise to posteriors

distributed according to Beta(0.27, 0.27), which Zhu and colleagues obtained by fitting their correction

prior todata onprobability judgments collectedbyStewart et al. 437 . We then trained theLearned Inference

Model on queries sampled from this distribution. When tested on a range of queries, the trained model

replicated the conservatism effect in Figure 7.14C. Regressing the expected probabilities onto the models’

responses revealed an estimated slope of 0.54, whichwas significantly smaller than 1 (Wald test: t = 14.49,

p < .001). This arises from regularization towards the mean response of 0.5. Zhu et al. 492 explained the

quadratic relationshipbetween the expectation and the variance as a feature of the sampling approximation.

However, our results demonstrate that the effect can arise evenwhen the approximation is deterministic, as

long as it is capacity limited. The key observation is that theLearned Inferencemodel contains degeneracies

in themapping from true to approximate posterior and these degeneracies aremore apparent further from

the mean. This increase in degeneracy results in lower variance at extreme probabilities. This can also be
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Figure 7.14: Correction prior. (A) Simulation results from the correction prior model in Zhu et al. 492 exhibiting conservatism.
Black line represents the optimal response and the colored lines show estimates from different parameterizations of the model.
(B) Quadratic relation between the variance of subjective probability estimates and mean subjective probability estimates, as
observed by Zhu et al. 492 . Points show data points from previous empirical studies. The line shows best fit quadratic fit to this
data. (C) The Learned Inference Model replicates the conservatism effect. Points represent mean estimates from our model,
the pink line represents the best fit linear regression to these points, the black line represents the optimal response. (D) The
Learned Inference Model replicates the variance effect. Points represent variance of the subjective responses from our model
for different mean subjective responses. The pink line represents the best fit quadratic fit to these points.
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interpreted as a bias-variance trade-off 131 – the increased bias towards the mean response (conservatism) at

extreme probabilities causes the variance of the estimator to decrease.

Regressing themodels predictions onto the simulated variance, we find that a quadraticmodel performs

better than an intercept-only model as also reported by Zhu et al. 492 , F(1, 19) = 78.73, p < .001 (Fig-

ure 7.14D). Solving the resulting quadratic regression for its maximum showed that this function peaked

at 0.498 (i.e., close to 0.5 as predicted by the correction prior). We conclude that our Learned Inference

Model can reproduce the conservatism and quadratic variance effects reported by Zhu et al. 492 , but with-

out a stochastic sampling algorithm. In the General Discussion, we return to the relationship between

learning to infer and stochastic sampling.

7.7 General Discussion

Although many studies suggest that the human brain is remarkably adept at carrying out Bayesian infer-

ence e.g., 182,251,246,331, many other studies present evidence for systematic departures from Bayesian infer-

ence e.g., 176,25,233,234,175. What does this mean for theories of probabilistic reasoning? Should we abandon

Bayesian inference as a descriptive model? Are people using Bayesian inference in some situations and

heuristics in others? These questions motivated our effort to formulate a new theory—learning to infer.

The starting point of our new theory is the assumption that the brain must efficiently use its limited

computational resources 145,271. This assumption means that Bayes-optimality is not the appropriate nor-

mative standard for probabilistic reasoning. Rather, we must consider how accuracy of probabilistic rea-

soning trades off against the computational cost of accuracy. A learning system that is trained to approx-

imate probabilistic inference will, when a limit on the computational cost is imposed (modeled here as

a computational bottleneck), exploit regularities in the distribution of queries. These regularities allow

the system to efficiently use its limited resources, but it will also produce systematic errors when answering

queries that are low probability under the query distribution. We showed that these are precisely the errors

made by people.

We implemented a specific version of this theory (theLearned InferenceModel) using a neural network

function approximator, where the computational bottleneck corresponds to the number of nodes in the
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hidden layer. Our choice of neural network function approximator was motivated by a natural comple-

mentarity between the strengths of probabilistic generativemodels and neural networks. Neural networks

are best thought of as pattern recognition and function approximation tools, rather than as ways to rep-

resent causal knowledge about the world 260. In contrast, probabilistic generative models are good ways

to represent knowledge about causal structure, and define what problem we are trying to solve in infer-

ring hidden causes from data, but they do not specify good effective inference algorithms. By using neural

networks to learn to infer in a probabilistic generative model, a cognitive agent can combine the strengths

of these two approaches. Neural networks are used not to recognize patterns in the external world, but

patterns in the agent’s own internal computations: what kinds of observed data typically indicate that a

particular inference is appropriate?

The model reproduced the results of several classical and recent experiments in which people under-

react to probabilistic information. We first observed patterns in under-reaction predicted by limited capac-

ity. We then found that the model can reproduce sample size effects, in particular different reactions to the

strength andweight of evidence, bymore strongly reacting to sources of information that have historically

beenmore diagnostic of the posterior. This led to the new predictions that under-reaction to the evidence

should occur when the queried posteriors covary more strongly with the prior than with the likelihood

(causing the function approximator to “attend” tomore to the prior), whereas under-reaction to the prior

should occur when the queries covary more with the likelihood than the prior. We tested this prediction

in a new experiment that varied the structure of the query distribution, confirming that people make dif-

ferent inferential errors depending on the query distribution, even when all probabilistic information is

provided to them. We also applied the analysis of under-reaction to several other experimental factors,

such as sample size, between- vs. within-subject designs, and continuous hypothesis spaces.

The Learned Inference Model also provided insights into a range of other inferential errors. For exam-

ple, we showed how it could explain belief bias in probabilistic reasoning, the finding that people are closer

to the Bayesian norm when given probabilities that are consistent with their real-world knowledge64. Be-

lief bias arises, according to the model, because the function approximator has to make predictions about

the posterior in a region of the query space that it was not trained on. Another example is the finding of se-
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quential effects in probabilistic reasoning: a single query can bias a subsequent query, if the two posterior

distributions are sufficiently similar74. This arises, according to the model, because learning in response

to the first query alters the function approximator’s parameters, thereby biasing the output for the second

query.

Finally, we showed how the Learned Inference Model offers a new realization for the correction prior

proposed by Zhu et al. 492 , according to which inferences are regularized towards frequently occurring

posterior probabilities. Taken together, these results enrich our understanding of how people perform

approximate inferences in computationally challenging tasks, which we can be accomplished by learning

a mapping between the observed data and the posterior. Our proposed Learned Inference Model is a

powerful model of human inference that puts learning and memory at the core of probabilistic reasoning.

7.7.1 Related Work

Egon Brunswik famously urged psychologists to focus on the structure of natural environments, and the

corresponding structure of features that the mind relies on to perform inferences 52. Herbert Simon pro-

posed the metaphor of the mind’s computations and the environment’s structure fitting together like the

blades of a pair of scissors, such that psychologistswouldhave to look at bothblades to understandhow the

scissors cut417. This interdependence between people’s strategies and their environments has been stressed

by psychologists for decades452, and our proposed Learned Inference Model fits well into that tradition.

Essentially, what we have argued for here is that subjects do not rely on a stable and fully rational engine for

probabilistic inference, but rather that they learn to infer—i.e., they optimize a computationally bounded

approximate inference engine, using memory to learn from previous relevant experience. Our proposal

emphasizes the importance of studying an agent’s environment, in particular the query distribution they

are exposed to. For example, whereas subjects who experienced informative priors in our urn experiment

ended up showing conservatism, subjects who experienced informative likelihoods showed base rate ne-

glect. Our proposal also stresses the importance of both memory (people re-use past computations) and

structure learning (people learn amapping between observable and the posterior) to explain subjects’ prob-

abilistic reasoning more generally.
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The idea that memory plays an important role in inference has been studied by a number of authors.

For example, Thomas et al. 450 developed a theory of hypothesis generation based onmemorymechanisms

see449 for an overview of this research program. Related ideas have also been explored in behavioral eco-

nomics to explain decisionmaking anomalies41. Our contribution has been to formalize these ideas within

a computational rationality framework 145, demonstrating how a resource-limited system could adaptively

acquire inferential expertise, which would in turn produce predictable inferential errors.

Ours is not the first proposal to apply a neural network-based approach to explain how people reason

about probabilities. Gluck & Bower 165 used an adaptive network model of associative learning to model

how people learned to categorize hypothetical patients with particular symptom patterns as having spe-

cific diseases. Their results showed that when one disease was far more likely than another, the network

model predicted base rate neglect, which they confirmed in subjects across 3 different experiments. This

is similar to our prediction that the Learned Inference Model will start ignoring the prior if it has been

historically less informative, for example because one disease has never appeared during learning. Using

a similar paradigm, Shanks 407 showed that some versions of base rate neglect can be accounted for by a

simple connectionist model. Both of these studies, however, provided subjects with direct category feed-

back, whereas our Learned InferenceModel only requires access to the joint probabilities, making it more

algorithmically plausible. Bhatia 29 showed how vector space semantic models were able to predict a num-

ber of biases in human judgments, including a form of base rate neglect based on typical and non-typical

descriptions of people and judgments about their occupations.

That the prior and the likelihood can be differentially weighted based on their importance has been

proposed before. For example, Koehler 248 argued that neither the base rate nor the likelihood are ever fully

ignored, but may be integrated into the final judgment differently, such that whether they are predictive

of the eventual outcome would influence the weight people place on them. The idea that people ignore

aspects of probability descriptions if they are not informative is a pivotal part of ecological definitions

of rationality, for example as part of the priority heuristic48. In one exemplary demonstration of how

ignoring unpredictive information can be beneficial, Todd&Goodie 453 simulated environments inwhich

base rates changed more frequently than cue accuracies, and found that models ignoring either the base
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rate or the likelihood could perform as well as their fully Bayesian counterparts.

7.7.2 Integrating with sampling-based approaches

??

Our theory relies heavily on a variational framework for thinking about the optimization problem that

is being solved by the brain’s approximate inference engine. This creates some dissonance with prevailing

ideas about approximate inference in cognitive science, most of which have been grounded in a hypoth-

esis sampling (Monte Carlo) framework see 391 for a review, with small numbers of samples. Hypothesis

sampling has also been studied independently in neuroscience as a biologically plausiblemechanism for ap-

proximate inference e.g., 54,192. In our own prior theoretical work, we have employed hypothesis sampling

to explain a range of inferential errors73,74. The question then arises of how (if at all) we can reconcile

these two perspectives – one of a variational approximation learned over several past experiences, versus

the other of a Monte Carlo approximation consisting of a handful of samples in response to the current

query. We discussed in broader terms the potential role of a learned inferencemodel in augmenting predic-

tions from a noisy sampler as part of our section on ‘Amortization as Regularization’. We had discussed

this in broader terms in CHapter 3. Here we sketch a few more concrete possibilities for how these ap-

proaches might be combined to build new, testable models of human probabilistic inference.

Almost all practical Monte Carlo methods rely on a proxy distribution for generating samples. Markov

chain Monte Carlo methods construct a Markov chain whose stationary distribution is the true posterior,

often making use of a proposal distribution to generate samples that are accepted or rejected. Importance

sampling methods simultaneously draw a set of samples from a proposal distribution and reweight them.

Particle filtering methods apply the same idea to the case where data are observed sequentially. One nat-

ural way to combine variational inference with these methods is to use the variational approximation as a

proposal distribution. This idea has been developed in the machine learning literature e.g., 83,188, but has

not been applied to human judgment.

For Markov chain Monte Carlo methods, another possibility would be for the variational approxima-

tion to supply the initialization of the chain. If enough samples are generated, the initialization should
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not matter, but a number of cognitive phenomena are consistent with the idea that only a small num-

ber of samples are generated, thereby producing sensitivity to the initialization. For example, probability

judgments are influenced by different ways of unpacking the sub-hypotheses of a disjunctive query73 or

providing incidental information that serves as an “anchor” 275,276. In these studies, the anchor is usually

provided as an explicit prompt in the experiment – learned inference strategies provide a model for what

such an anchor for a new query could be in the absence of an explicit prompt, in the form of an ‘a priori’

guess based on past judgment experience.

Several recent methods in the machine literature combine the complementary advantages of sampling

approximations and variational approximations leading to several new algorithms 269,318,382 that could also

be studied as models for human judgment.

The blackbox variational inference algorithm that we use (see Chapter 3) does in fact involve sampling:

the gradient of the evidence lower bound is approximated using a set of samples from the variational ap-

proximation. Although we are not aware of direct evidence for such an algorithm in brain or behavior,

the idea that hypothesis sampling is involved in the learning process is an intriguing possibility that has be-

gun to be studied more systematically47,46,383. It resonates with work in other domains like reinforcement

learning, where people seem to engage in offline simulation to drive value updating 146,151,314.

7.7.3 Connections to other models for judgment errors

In addition to the sampling-based approaches that we discuss in the previous subsection, there may also

be other sources of probabilistic judgment errors in humans. Some of these include misinterpretation

or misunderstanding of the question being posed by the experimenter464, inability to map the provided

probabilities onto an intuitive causal model 254, or simply disbelief in the experimenter’s description of the

data-generating process.* We have restricted most of our attention to studies in which subjects had to rea-

son about data-generating processes that are explicitly described (e.g., how many balls of each color were

*While these models predict deviations from optimality, they do not always specify a model for the responses
actually produced,whenparticipants donotunderstand, internalize, or believe thedata-generatingprocess presented
by the experimenter. One possibility is that they fall back upon ‘a priori’ notions of the data-generating process. Our
Learned InferenceModel provides a model for what these context-sensitive ‘a priori’ beliefs might be – in particular
how these could be learned from past judgment experience.
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present in an urn). Considerable evidence suggests that people’s judgments and decisions differ depending

on whether they have received a problem as a description or have experienced probabilities through expe-

rience 205,206. These are all likely part of the explanation for the judgment errors discussed in this paper.

Below, we suggest a few ways in which predictions from our model could be integrated with, or distin-

guished from, predictions driven by these other mechanisms.

The Learned Inference Model in its current formulation assumes that the correct data-generating pro-

cess is provided in the query, and only learns how to do inference within this data-generating process. It

does not account for uncertainty about or disbelief in the data-generating process itself, and is insensitive

towhether information about it is acquired through description or learned fromprevious experience. One

could manipulate the amount of experience participants have with the data-generating process by letting

them observe samples from it within the experiment, rather than only providing them with a description

of the probabilities. This would manipulate the certainty participants have in the data-generating pro-

cess, and pave the way towards assessing its influence on probability judgments in these domains – inde-

pendent of the effects predicted by a Learned Inference Model which assumes perfect knowledge of the

data-generating process.

Domain knowledge and pre-experimental experience can also contribute to uncertainty about the pre-

sented data-generating process. Most of our results are from highly controlled domains (i.e., balls in urns),

that people likely do not have strong intuitions for based on past experience. Our findings in these do-

mains are modeled with inference strategies learned within the experiment. Considerable evidence shows

that people’s judgments and decisions are influenced by whether the data-generating process presented

matches pre-experimental intuitions about the causal structure of the real world 254,4. The Learned Infer-

ence Model in its current formulation has no notion of real-world causal structure, and therefore no intu-

ition about it. It can learn inference strategies from within-experiment experience in any data-generating

process irrespective of whether it respects such intuitions. Expanding our results to naturalistic settings,

where people might have ‘a priori’ causal intuitions from previous experience, would allow us to manipu-

late how ‘intuitive’ the presented data-generating process is and tease apart its role in judgment errors from

the predictions of the Learned Inference Model.
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Finally, we discussed in the previous section how learned inference strategies might be integrated with

memoryless sampling-based approaches that approximate responses at each query independently with a

small number of samples. We discussed this as a bias-variance trade-off in our section on ‘Amortization as

regularization’. A prediction of this framework is that the extent of such regularization will depend on the

amount of experience accrued in that domain, with more experience favoring a learned inference strategy

over memoryless stochastic sampling. Empirical results suggest that experts and novices employ differ-

ent decision strategies, with experts appearing to rely more on memory-based heuristics 157,88,367. Studying

judgment errors across domains where participants vary in pre-experimental experience, or even over the

course of an experiment as within-experiment experience increases, would allow us to better understand

how learned and memoryless inference strategies interact and trade-off.

More broadly, our theory of learning to infer allows us to frame many of these errors in the context

of resource-rationality 271,145, and explains how biases observed in the lab could be inevitable consequences

of algorithms that let resource-bounded minds solve hard problems in real time. Many of the alterna-

tive mechanisms for judgment errors suggested above have also been interpreted this way274,275,343. Our

model uniquely addresses how such biases could derive rationally from limited capacity inference strategies

learned from the history of past judgment experience. We leave many questions open for further investi-

gation, for example: how the mechanisms of learning to infer interact with other approximate inference

strategies; which of these phenomena are best explained by our approach as opposed to others, and under

what circumstances; and how previously proposed accounts in part might also be consequences of learned

inference strategies.

7.7.4 Limitations and future directions

Wemodeled themappingbetweenqueries and theposterior using amultilayerneural network. Thismodel

does not assume any explicit representational structure; the mapping is optimized using blackbox varia-

tional inference, and many different mappings can be learned depending on the capacity of the neural

network. While this model provides a good first-order approximation of what the brain might be doing,

it remains to be seen whether the functional form we chose is the best relative to other possibilities. For
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example, our recent work on function learning suggests that people have a strong inductive bias for com-

positional functions—i.e., functions that can be built up out of simpler building blocks through algebraic

operations401.

Another limitation of our work is that we focused on cases where the posterior is defined over a sin-

gle random variable, but in the real world people frequently need to make inferences about subsets of

variables (or functions of those subsets) drawn from very large sets of variables with complex joint distri-

butions. This complexity was the motivation for our previous work on hypothesis sampling, which offers

a computationally tractable solution to this problem73. The memory-based subadditivity effects that we

modeled74 are an example of a phenomenon inwhich amortized inference and hypothesis samplingmight

be unified, but we have not provided a comprehensive unification (though the previous section describes

some potential avenues). For example, although our model can capture the fact that more similar query

items can lead to higher subadditivity effects than less similar items, it currently does not explain how

subadditivity arises to start with.

In our model, the inputs are already boiled down to only the relevant variables and therefore very low-

dimensional, and the cost function only evaluates how well the network predicts posterior probabilities

from these inputs. Inputs in the real world, however, are likely more noisy and high dimensional. Several

related but different tasks are often multiplexed into the same network representations in the brain 5,111.

Extending our theory to more noisy and uncertain real-world learning is an important and interesting

challenge.

We have assumed that the computational bottleneck is fixed, defining a limited representational capac-

ity for the function approximator that must be shared (possibly unequally) across queries. However, in

particular when considering computational capacity as a cost, another possibility is that the bottleneck is

flexible: representational capacity might increase (e.g., through the allocation of additional units) when

greater accuracy becomes worth the cost of this greater investment, possibly by commandeering resources

from other cognitive systems. This predicts that more accurate probabilistic judgment should be associ-

ated with poorer performance on other concurrent tasks that share cognitive resources, and that properly

incentivizing people should improve their performance. Contrary to this, evidence suggests that incentives
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have little effect on some inferential errors, such as base rate neglect 175,127,358, and this point is corroborated

by evidence that inferential errors also appear in real markets with highly incentivized traders 14.

7.7.5 Conclusion

In his paper criticizing past research on base rate neglect, Gigerenzer 153 argued that “adding up studies

in which base rate neglect appears or disappears will lead us nowhere. Progress can be made only when

we can design precise models that predict when base rates are used, when not, and why.” Here, we have

offered such a model. Concretely, our proposal is that people learn to infer a posterior from observed

information such as the priors, likelihoods and data. Our Learned Inference Model explains a host of

effects on belief updating such as under-reaction, belief bias, and memory-dependent subadditivity. It

also renders inference approximate and computationally tractable, making it a plausible process model of

human probabilistic inference.
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8
Ecological rationality in artificial intelligence

As modern deep networks become more complex, and get closer to human-like capabilities in certain do-

mains, the question arises of how the representations and decision rules they learn compare to the ones

in humans. In the previous chapters, we have studied how human representations adapt to their envi-

ronments, and make ecologically rational approximations to otherwise intractable inference problems. In

this chapter, I study analogous representations in one such machine-learned artificial system for natural

language processing.72

Similar to the cognitive science experiments that discovered biases and errors in human probabilistic

judgment on designed test cases457,122,157, we build a diagnostic test data set that examines these machine-

learned representations under controlled settings. Performance on this new diagnostic data set indeed

reveals a set of ‘cognitive biases’ that indicate heuristic strategies. By analyzing the training data set on

which thismodelwas trained, we find that the heuristic strategies learned exploit underlying structure in its

learning environment, i.e. that the heuristics are ecologically rational. The mechanism for acquiring these
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heuristic strategies has similarities to the way I previously modeled context-dependent heuristic strategies

in humans (Chapter 7). *

This demonstration, that ecologically rational heuristicsmightunderlie theperformanceof deep-learning

systems, highlights a systemic problemwith howmachine-learned representations are evaluated. The stan-

dardmeasure of progress on a task inmachine learning is to report improved performance on standardized

data sets, like the training data set in this paper. My results however, show that good performance on stan-

dard datasets can arise from incidental heuristics that do not generalize well. An intuitive example is a

system learning to recognize wolves in images by the snow in the background. While this heuristic works

most of the time, it does not really encode what a wolf is and would not generalize to recognizing wolves

in other environments. By leveraging methods from cognitive science like testing on diagnostic data sets,

which engendered the thriving literature on heuristic inference in human cognition, I develop better ways

to understand and assess these representations.

I further investigate the effect of the training distribution on learning these heuristic strategies, by study-

ing changes in the learned representations with various augmentations to the training set. These augmen-

tations alter the ecological validity of the learned heuristics, and is analogous to the machine-learning con-

cept of generating adversarial examples. 167 Our results reveal parallels to the analogous representations in

people. We find that these systems can learn abstract rules and generalize them to new contexts under cer-

tain circumstances – similar to human zero-shot reasoning. However, we also note some shortcomings

in this generalization behavior. The modes of failure in this generalization is similar to the ecologically

rational heuristic behavior in humans studied in Chapter 7, such as belief bias. These analyses allow us to

formulate a new metric of ‘context-tying’ to test the generalization capacities of artificial representations,

and whether or not they generalize the way humans can. Metrics like these also lead to a clearer and more

concrete picture of what we mean by ‘human-like’ language understanding.

Studying these parallels suggests newways tounderstandpsychological phenomena inhumans aswell as

informs best strategies for building artificial intelligence with human-like language understanding. It also

*A key distinction is that the machine learning methods described here is discriminative. It does not explicitly
learn the model followed by learning to perform inference in it, but rather learns these end to end. See Chapter 4 for
a more detailed discussion of this distinction.
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further highlights the importance of considering the environment (the training data) in understanding –

and, in the case of artificial systems, also manipulating – the representations that intelligent systems learn.

8.1 Analyzing machine-learned representations

Recent years have seen a vast improvement in the capabilities of artificial intelligence systems, driven pri-

marily by developments in deep neural networks (see LeCun et al. 266 for a review). These have allowed

artificial system to reach human-level performance at video games 313, object recognition 385, and voice gen-

eration 336, as well as produced impressive performance in several other domains. However, some serious

concerns haunt deep learning approaches and their promise as a general solution to artificial intelligence.

Many of these concerns surround the lack of structure in the representations and decision criteria these

systems learn 289,261. This problem has been implicated in deep learning’s data inefficiency and inability to

learn abstract structure from few examples, its difficulty in utilizing hierarchical structure and fostering

transfer between tasks and domains, as well as the challenge of integrating established prior information

into deep learning systems. It also presents serious concerns about the interpretability of its representa-

tions and decision criteria, making them less dependable and risky for deployment in sensitive or highly

variable domains.

All of this points to a crucial problem: how can we better understand the representations learned by

these systems? Existing studies e.g., 236,268,487,488 primarily use approaches inspired by neuroscience meth-

ods developed to understand the brain, for example the statistical analysis of unit activations, and ablation

studies where specific units are disconnected or deactivated. These methods promise interesting bottom-

up insights into the inner workings of these systems. Cognitive science provides another set of tools to

approach this problem from the top down 374,231,300, by decomposing cognitive processes into their com-

putational components, buildingmodels that incorporate these components, and testing these bymaking

predictions about behavior on carefully selected test problems that distinguish different hypotheses.

The cognitive science approach has yielded huge benefits in understanding higher-level cognition in

humans, a prime example of which is the human ability to learn, understand, and produce language62,279.

This domain exemplifies a hallmark of human intelligence: the ability, in the words of von Humboldt,
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to “make infinite use of finite means.” Specifically, human cognitive abilities have been characterized as

systematic 121,258 – this indicates an algebraic capacity to produce new combinations from known compo-

nents. For example, when a person learns a word in a specific context as part of a particular sentence,

they can immediately use this new word in an infinity of other sentences in which this word has never

previously been encountered. Systematicity therefore allows humans an impressive capacity to generalize,

transferring knowledge from one context to others. This ability requires the representations underlying

this newly learned word for example, to be abstract (not tied to specific contexts) and compositional (pos-

sible to combine with other words and sentences). The failure of neural network models to achieve such

systematicity has been a recurring (and controversial) theme in cognitive science 121,261. This concern has

previously been studied specifically in the domain of natural language 257,135,22, demonstrating the lack of

abstract compositional reasoning in certain networks. These analyses are often carried out on toy systems,

and while they demonstrate conclusively the lack of systematicity, they largely neglect a deeper analysis of

what the systems do learn.

In this paper, we carry out an analysis of the representations learned by a state-of-the-art model for a

difficult natural language processing task. We discover that its representations are not systematic; instead,

the model uses various heuristic strategies. We then investigate how these heuristics might arise. Analyses

of the training distribution reveal that it is very biased, containingmany unintended structural regularities

that can be exploited by these much simpler heuristics. These simple rules are therefore easily acquired

by the neural network, since they explain a substantial amount of variance without having to invoke a

more complex systematic representations. We then carry out various augmentations to the training set

to better understand if the system can learn abstract composable representations, given the right training

distribution. We find parallels between our findings and studies of human representations in terms of how

systematic they are under certain circumstances, as well as in terms of when and where this systematicity

breaks down. We discuss how such analyses can be fruitful to both cognitive science andmachine learning.
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8.2 Background

In this section we review some background on the kinds of representations we will be studying (vector

space embeddings of sentences). We also review the three key factors in how such embeddings are gener-

ated: the task that they are optimized for, the architecture of the model used to perform that task, and the

training distribution on which performance is optimized.*

8.2.1 Vector space embeddings

Vector space models represent items as vectors in some metric space. These have a long history in cogni-

tive science as models of semantic representations438,20,350. In particular, in the domain of language, vector

spacemodels ofwords (also known asword embeddings) that are learned using distributional information

(statistics of text corpora) have been shown to encode syntactic as well as semantic structure, and have been

used in psychological models for syntactic category acquisition 364, inductive vocabulary learning 263, ana-

logical reasoning 384, categorization 227, and high-level associative judgments 29. Modern machine learning

has allowed the mining of very large datasets to produce vector space embeddings that are now commonly

used as the word representations in artificial intelligence systems for natural language processing 349,306.

Understanding language requires understanding not only words, but also their relations within a sen-

tence. These relations are abstract and composable, allowing language to be combinatorially productive

– with a finite set of words, one can systematically produce an infinite set of sentences simply by creating

new and longer combinations of these known words. The number of sentences in a language therefore

far exceed the number of words. For this reason, generating similar vector embeddings for sentences has

proven challenging. Recent papers have developed several supervised aswell as unsupervised approaches to

learning vector space representations of sentences using recurrent neural networks (RNNs) that are able to

represent the order of words in a sentence 244,210,65. These are intended to capture sentence-level semantic

content, and have been shown to perform reasonably well on transfer tasks (sentence-level semantic tasks

*The details and implementation of the optimization algorithm also contribute see 380 for an overview, but as
long as the optimization reaches convergence this has relatively little effect, and we leave this out of our current
discussion.
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on which the embeddings were not specifically trained). In particular, the performance of these sentence

models exceeds the performance of representations that treat sentences as bags of words (BOW models)

– these patently lack any order information about the words, therefore ignoring the abstract and compos-

able relational structure at the sentence level. However, it is unclear exactly what relational information

between words is actually represented in such RNN sentence models. In this work, we start to shed light

on this question.

8.2.2 Natural Language Inference

The sentence embeddings we analyze are trained on the natural language inference (NLI) task. The goal

is to classify pairs of sentences (a premise and a hypothesis) into ‘entailment’, ‘contradiction’, or ‘neutral’,

depending on the semantic relation between the two sentences. This is a popular domain for studying

artificial representations since it has a lot of relatively interpretable underlying structure 164,300,326. For ex-

ample, it is a simple domain inwhich abstract and composable relational structure is required –word-level

information is not generally sufficient to perform well on this task. The premise sentence “Anne is more

cheerful than Bob” contradicts the hypothesis sentence “Anne is less cheerful than Bob”, but entails the

hypothesis sentence “Bob is less cheerful than Anne”. Here, both the hypothesis sentences have the exact

samewords, and would be indistinguishable if we were just comparing the words in them. More generally,

X is more Y than Z entails that Z is less Y than X, for any X, Y and Z. In this case, the specific words used

almost don’t even matter, and the bulk of the information is in the relations between the words in the

sentence. Encoding abstract rules like this allows us to systematically carry out natural language inference

on combinatorially many different sentences, with different Xs, Ys, and Zs.

The human ability to carry out abstract reasoning of this sort is a richly studied topic. Some of these

abilities however are so obvious, that they are often simply taken for granted without formal study. For

example, it is reasonable to assume that any adult human (in the absence of time pressure or cognitive

load) can fairly easily process that if X is more Y than Z, then in general Z is less Y than X irrespective of

the specific meanings of X, Y and Z. In this paper, we investigate to what extent certain machine-learned

sentence embeddings can represent and use such abstract rules in natural language inference.
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Despite the generally acknowledged power of human abstract reasoning, a number of studies indicate

that humans are not perfect: semantic content (for example the specificmeanings of theX, Y andZs above)

has been shown to interferewith systematic inferences in an effect often termed ‘belief bias’45,225. This effect

is especially noticeable in children 110, as well as adults under time pressure or cognitive load 106. In the last

part of this paper, we discuss similarities between humans and machines in how they fail certain tests of

systematicity.

8.2.3 Models for sentence embeddings

The sentence embeddings we study in this paper are from a highly successful NLI system, InferSent65.

Each premise and hypothesis sentence are input to a sentence encoder as a sequence of pre-trained 300-

dimensional GloVe word embeddings 349. These word embeddings already contain a lot of information

about the semantic and syntactic roles of the words (see section on Vector space embeddings for details),

and therefore a large part of the lexical information is already represented. Therefore the bulk of the work

InferSent has to do is to learn and represent how these words relate to one another in a sentence to provide

meanings. The sentence encoder takes in this variable length input and, after passing it through various

recurrent and convolutional layers see65 for details, provides a 4096-dimensional vector as output. This

output vector serves as a sentence embedding. Tomake the final inference, these sentence embeddings for

the premise and hypothesis are fed to a simple classifier described in Figure 8.1 that labels each pair as entail-

ment, neutral or contradiction. The network is trained end-to-end with supervised learning, using a large

labelled dataset for NLI (see next section for details on this dataset). The learned embeddings were shown

to perform well on other sentence-level tasks (such as sentiment analysis, semantic textual similarity and

other natural language inference datasets) by re-using the sentence encoder and training only the classifier

for the specific task at hand. This indicates that the sentence encoder does capture some semantic content

in the embeddings.

For our tasks, we replicate the procedure in Conneau et al. 65 to obtain sentence embeddings. These are

henceforth referred to as the InferSent sentence embeddings. Our trained InferSentmodel gives us 84.73%

accuracy on validation and 84.84% accuracy on the test dataset, which is comparable to the performance of
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Figure 8.1: InferSent architecture 65.

the classifier reported in Conneau et al. 65 . For comparison, we also train a bag-of-words (BOW) baseline

model that averages the pre-trained GloVe word embeddings for all the words in the sentence to form a

sentence embedding. These embeddings cannot represent abstract relational structure, since the architec-

ture of the model used to generate them (a simple average of the word embeddings) cannot express word

order. We then train a simply classifier on these embeddings to perform natural language inference. This

model achieves 53.99% accuracy on the SNLI test set comparable to the BOWperformance reported in65.

Neural networks can act as universal function approximators416,215, and given sufficient capacity, they

can represent any arbitrarily complex set of relations between the words in the sentence. The InferSent

model has a very large capacity due to a large number of layers and hidden units see65, so a lot of abstract

compositional structure is in theory within the representational capacity of these sentence embeddings. In

this paper, we analyze how much systematic structure is actually learned and utilized for the NLI task at

hand.

8.2.4 Training datasets

Tounderstand sentence embeddings like the ones learnedby InferSent, it is imperative to not only consider

themodel specifications for the system that produces them (in this case the specific end-to-end architecture
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of the network in InferSent), but also the learning signals it receives from the training set. For many deep

learningbasedmethods, very little information about the structure of the task is baked into the architecture

of the models – the only structure about language that it is endowed with before training are the biases

that come with using a recurrent neural network as the architecture. This specifies that sentences have

variable-length, sequential structure. These embedding models are therefore fairly ‘tabula rasa’, and most

of what they represent about the structure of the task (in this case natural language inference) is learned

from training data. As elaborated in the previous section, some abstract compositional structure is within

the representational capacity of the InferSent sentence embeddings–butwhether ornot the right structure

is actually learned and represented depends largely on the training data. The significance of the training set

on the representations learned by flexible deep learning methods is often not adequately considered. One

contribution of this work is to highlight and analyze this issue.

InferSentwas trained on the StanfordNatural Language Inference (SNLI) dataset44, a popular labelled

dataset for natual language inference. SNLI consists of 550k premise-hypothesis sentence pairs, and is

balanced (consists of equal number of pairswith entailment, contradiction andneutral relationships). The

dataset was generated with a crowd-sourcing framework. Workers were presented with a scene description

from a corpus of image captions that act as the premise, and asked to supply hypothesis sentences that

have each of the three possible NLI relations (entailment, neutral, and contradiction) to the given premise.

The freedom to produce entirely novel hypotheses leads to a rich set of sentences; however, it also leads to

some artifacts that can strongly bias the representations learned by a ‘tabula rasa’ system. We discuss these

in later sections.

8.3 A test dataset of minimal cases: The Comparisons dataset

Our goal is to understand the representations and decision criteria learned by InferSent, in particular how

much systematic relational information they encode and utilize – do they represent abstract rules for the

ways words combine to give meaning to sentences? In the machine learning literature on natural language

processing, any performance above the bag-of-words (BOW) baseline (that only receives the words in the

sentence with no order information) is often seen as proof of the encoding and utilization of relational
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information. However, this is an unwarranted conclusion—the BOW baseline usually receives only aver-

aged word vectors for the sentence, and therefore also loses some of the lexical information. It often does

not actually reach the best possible performance with only the words. Performance above this baseline

therefore does not license the conclusion that relational information is being encoded and used at all.

Here, we pursue an alternative approach, inspired by traditions in cognitive psychology and psycholin-

guistics of building diagnotic test sets to investigate the underlying representations and decision rules. The

goal is to generate a set of sentence pairs such that encoding the relations betweenwords (in addition to the

words themselves) is required to correctly classify them into the three NLI classes. Diagnostic test datasets

such as these, that posit a hard baseline for performance without relational information, provide a more

foolproof way to test whether such information is being used.

We considered pairs of sentences such that theNLI relation between the sentences can be changedwith-

out changing any of the words in the sentence, only their order. We generated our test dataset using com-

parisons as these are easy to fit into the NLI framework, and yield many simple examples of sentence pairs

that require more than word-level data to understand. For example, the premise sentence “the woman is

more cheerful than the man” contradicts one hypothesis sentence, “the woman is less cheerful than the

man”, but entails another hypothesis sentence, “the man is less cheerful than the woman”. Since both hy-

pothesis sentences have the exact same words, they would be indistinguishable if we were just comparing

their bag-of-words representations. Therefore, a model based only on the words, and not considering the

relations between them, would at most get one of the two classifications right. This caps the bag-of-words

performance at 50%, and some relational rules must be learned to perform above this baseline.

Generation of several such sentence pairs can be easily automated. We considered three sub-types, de-

scribed below and summarized in Tables 8.1 and 8.2.

8.3.1 Same type

Premise-Hypothesis pairs differ only in the order of the words.

Premise: The woman is more cheerful than the man

Hypothesis: The man is more cheerful than the woman
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CONTRADICTION

Premise: The woman is more cheerful than the man

Hypothesis: The woman is more cheerful than the man

ENTAILMENT

8.3.2 More-Less type

Premise-Hypothesis pairs differ by whether they contain the words ‘more’ or ‘less’.

Premise: The woman is more cheerful than the man

Hypothesis: The woman is less cheerful than the man

CONTRADICTION

Premise: The woman is more cheerful than the man

Hypothesis: The man is less cheerful than the woman

ENTAILMENT

8.3.3 Not type

Premise-Hypothesis pairs differ by whether they contain the word ‘not’.

Premise: The woman is more cheerful than the man

Hypothesis: The woman is not more cheerful than the man

CONTRADICTION

Premise: The woman is more cheerful than the man

Hypothesis: The man is not more cheerful than the woman

ENTAILMENT

Type Entailment hypothesis Contradiction hypothesis

Same X is more Y than Z Z is more Y than X
More-Less Z is less Y than X X is less Y than Z
Not Z is not more Y than X X is not more Y than Z

Table 8.1: Rules in Comparisons dataset for Premise: X is more Y than Z
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Type Number of sentence pairs

Comparisons (same) 14670
Comparisons (more-less) 14670
Comparisons (not) 14670

Table 8.2: Comparisons dataset summary.

To facilitate comparison with the SNLI dataset, we ensured that the vocabulary distribution of our

Comparisons dataset is similar to the original SNLI training dataset.* This ensured that we are only ma-

nipulating the relational structure of the test set, and poor performance cannot be attributed to not having

experienced the specific words before.

8.4 Testing the sentence embeddings

We tested the two classifiers based on two different sentence embeddings (the InferSent sentence embed-

dings, and the BOW sentence embeddings) on the constructed test set (the Comparisons dataset, Table

8.2). Both of these classifiers were trained for the same task (Natural Language Inference), on the same

training dataset (SNLI), and differed only in themodel used to generate them. The InferSent embeddings

had access to word order, while the BOW embeddings did not (see Section ‘Models for sentence embed-

dings’ for details). The overall performance of each of the two classifiers on the Comparisons dataset are

given in Table 8.3, and analyzed in greater detail in the following sections.

Type BOW InferSent

same 50.0 50.37
more/less 30.24 50.35
not 48.98 45.24

Table 8.3: Performance on the Comparisons dataset.

*Only a few words differed by more than 1% from their occurrence rate in SNLI, such as not, a, than, the, is,
less, more. This was inevitable given the general structure of the comparison sentence pairs we use. All of thesewords
however did still occur in the SNLI training corpus, and were not new to the model at test time.
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8.4.1 Performance of Bag of Words

We found that the BOW embeddings make classifications that are exactly symmetric across the two true

labels (entailment and contradiction) in each task (rows in Figure 8.2). This is expected since the sentence

pairs with one label are just permuted versions of the sentence pairs with the other label. Therefore BOW

cannot distinguish them, and necessarily classifies both of them the same way. This also ensures that the

performance is capped at 50%. Asymmetry between the classifications of the two categories can occur only

when relational information is encoded in the sentence embedding.

Considering the aggregate performance of BOW in Table 8.3, we found that performance, particularly

on the ‘more/less’ type subset of the test dataset (30.24%), was significantly below 50%. This highlights

the trouble with using BOW embeddings as a baseline for the encoding and use of relational information.

Up to 50% performance is achievable on this dataset without using any relational information; therefore

performance above the BOWbaseline of 30.24% does not necessarily imply the use of relational informa-

tion.

Figure 8.2: BOW embedding confusion matrices, with normalized rows.

Figure 8.3: InferSent embedding confusion matrices, with normalized rows.
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8.4.2 Performance of InferSent

The performance of the InferSent embeddings was slightly asymmetric (Figure 8.3), indicating that it was

able to distinguish sentences slightly, based on relational information. Yet overall the InferSent embed-

dings were extremely poor at this task (Table 8.3), achieving performances slightly above 50% for two of

the three sub-types of sentence pairs in the Comparisons dataset, and even less than 50% in a third sub-

type. This indicates that InferSent embeddings do not correctly encode and utilize the kinds of abstract

relational rules we tested with the Comparisons dataset.

However, InferSent’s performance on another test dataset (the SNLI test dataset) is as high as 84%

– so it is clearly encoding some relevant information about natural language inference. Further, a quick

glance at Figure 8.3 indicates that InferSent does not respond randomly to the queries in our Compar-

isons dataset, but rather in some structured (though incorrect) way. Rather than simply conclude that

InferSent embeddings are not systematic and leaving things at that, we can study patterns in the incorrect

classificationsmade to better understand the underlying representations and decisions rules. Since our test

dataset is highly structured, it allows a controlled way to generate and test hypotheses about the heuristic

representations and decision rules InferSent implements.

Apart from isolating and characterizing these heuristics, it is also instructive to consider how InferSent

might come to encode them in the first place. To answer this, we look to the study of heuristic strategies

in humans. The theory of ecological rationality452,419 posits that a system can exploit structural regulari-

ties in its learning environment using heuristics that achieve close to optimal performance in that specific

environment. These might be much simpler than the most general strategy that performs well in all en-

vironments. Heuristics that leverage these structural regularities are therefore termed ‘ecologically valid’

in that environment. This suggests that we can better understand how heuristic strategies might arise in

InferSent by examining if they are ecologically valid in its ‘learning environment’ (i.e., the training set). In

the following sections, we delve into the heuristic strategies that explain performance on our Comparisons

datset, as well as how InferSent might have come to encode them by testing their ecological validity in the

SNLI training dataset.
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Overlap Heuristic

We note in Figure 8.3 that almost all the sentence pairs in the same-type comparisons were classified as

entailments, despite half of them being true contradictions. A distinguishing feature of the same-type

comparisons is that the premise and hypothesis sentences have full word overlap (they both contain exactly

the same words). This observation allows us to hypothesize an overlap heuristic: high overlap in words

between premise and hypothesis biases InferSent against classifying the pair as a contradiction.

While we have seen some evidence that this heuristic is indeed at play (based on the performance on

the same-type comparisons), the question remains as to why it encodes this rule. With our knowledge

of language, we know this simple rule to reflect on incorrect understanding of natural language inference.

However, all the knowledge about the NLI task that InferSent encodes is from its training dataset. If the

dataset has underlying structural regularities that can be exploited by simple heuristic strategies, then a

tabula rasa model for NLI such as InferSent that is trained on this dataset will learn to encode it.

We carried out an analysis of the SNLI dataset to determine if the overlap heuristic is ecologically valid

in it. First, we observed anecdotally that indeed several contradictory sentence pairs have no overlap in

words. For example, a contradictory sentence pair in SNLI is:

Premise: Several people are trying to climb a ladder in a tree.

Hypothesis: People are watching a ball game.

CONTRADICTION

Toquantitatively verify this observation,we ranked all the sentencepairs in SNLIbyoverlap rate: # of overlap words
total # of words (in

non-increasing order). We then considered the top X sentences with highest overlap for different Xs. As

shown in Table 8.4, when considering the full dataset, the distribution is balanced (the percentage of en-

tailments, contradictions and neutral sentences are equal). However, we found that as the word overlap

in the sentences increases, the percentage of contradictions drops. When considering only the top 1000

sentence pairs for overlap, we found that 91.5% of them have entailment or neutral labels, with only the

remaining 8.5% having a contradiction label.

It is therefore natural that InferSent encodes the simple overlap heuristic as a predictor of contradiction.

This explains not only the failure of InferSent to generalize its goodperformance on SNLI to the same-type
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Top Entailment Neutral Contradiction

All 33.4% 33.3% 33.3%
10000 39.5% 35.7% 24.8%
1000 50.8% 40.7% 8.5%

Table 8.4: Percentage of entailments split by overlap rate of words in SNLI.

comparisons in our test dataset, but also matches the specific failure mode we observe in its responses.

Antonyms Heuristic

Wenote in Figure 8.3 the opposite trend for themore/less-type comparisons, where almost all the sentence

pairswere classified as contradictions, despite half of thembeing true entailments. A distinguishing feature

of themore/less-type comparisons is that the the premise and hypothesis always differ by oneword – if the

premise contains the word ‘more’ (‘less’) then the hypothesis always contain the word ‘less’ (‘more’). This

observation allows us to hypothesize an antonyms heuristic: sentences differing in the presence of words

that have opposing meanings (antonyms) tend to be classified by InferSent as contradictions, irrespective

of the other words or their order in the sentence.

Similarly to the previous section, we investigated the training dataset to elucidate if this heuristic is eco-

logically valid in InferSent’s training set. Anecdotally, we saw that the contradicting hypotheses provided

by crowd workers to generate SNLI do follow this pattern. For example, a contradictory sentence pair in

SNLI is:

Premise: A man in a white t-shirt takes a picture in the middle of the street with

two public buses in the background.

Hypothesis: A man is wearing a black t-shirt.

CONTRADICTION

To verify this observation quantitatively, we analyzed the statistics of antonym usage in SNLI. To test

whether a sentence pair (A,B) contains antonyms, we went through each word in sentence A, and consid-

ered all synonyms of that word, and considered all antonyms of those synonyms. Finally, we checked if
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sentence B contained any of those antonyms. These synonyms and antonymswere found using theNLTK

WordNet software 30. We then considered two different statistics. First, we calculated P(Contradiction |

Antonym),which is the probability that a sentence pair is a contradiction given that its premise andhypoth-

esis contain an antonym pair. This measures how well the presence of antonyms predicts a contradiction

label in the training set. Second, we calculated P(Antonym | Contradiction), which is the probability that

a contradictory sentence pair contains antonyms. This measures how well a contradiction label predicts

antonyms. Both statistics were compared with the equivalent statistic for entailment, to provide a baseline

for comparison. Table 8.5 shows that the presence of antonyms strongly predicts a contradiction label in

the SNLI dataset (61.2% compared to chance at 33.3%). We also found that a contradiction label predicts

the presence of an antonym pair (12.2%) more strongly than entailment did (3.5%). This indicates that the

antonyms heuristic can explain significant variance for the contradiction label in the training set.

P(Antonym |X) P( X |Antonym)

X = Contradiction 12.2% 61.2%
X = Entailment 3.5% 18.0%

Table 8.5: Percentage of entailments split by antonym word pair in the SNLI dataset.

Since most of our Comparisons dataset contained a large amount of overlap between premise and hy-

pothesis, the rules InferSent applieswhen responding to these test questionsmight be biased towards those

learned in similar high-overlap settings during training. We checked the statistics of antonymy in the the

high overlap subset of SNLI (top 10,000 highest overlap) to provide a closer comparison (Table 8.6). Here,

contradiction predicts the presence of an antonym pair (43.7%) more strongly than in the whole dataset

(12.2%). The difference between P(Antonym | Contradiction) and P(Antonym | Entailment) is also more

pronounced in this high overlap subset. The presence of an antonym pair no longer predicts contradic-

tions at a high rate (28.9 %), but this is possibly due to the very low base rate of contradictions in the high

overlap subset of SNLI, as compared to entailments.

These results suggest again, that the underlying statistics of the SNLI dataset allow models, including

InferSent, to perform well with simple lexical heuristics that ignore the order of words and their relations.
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P(Antonym |X) P( X |Antonym)

X = Contradiction 43.5% 28.9%
X = Entailment 8.7% 34.3%

Table 8.6: Percentage of entailments split by antonyms in high overlap SNLI subset.

Negation Heuristic

We see in Figure 8.3 that the not-type comparisons are preferentially classified as contradictions. A distin-

guishing feature of the not-type comparisons is that the premise and the hypothesis differ by the presence

of the negation ‘not’. This observation allows us to hypothesize a negation heuristic where sentence pairs

that differ in the presence of negations are preferentially classified as contradictions.

Following procedures analogous to previous sections, we first noted anecdotally, that this heuristic

seems to have validity in the contradicting hypotheses in SNLI. For example, a contradictory sentence

pair in SNLI is:

Premise: Men turn to the camera to smile on the middle of three long tables in

a refectory.

Hypothesis: The man is not smiling.

CONTRADICTION

We verified this observation quantitatively by looking at the statistics for negation in SNLI. We col-

lected all sentence pairs that contain “negating N-grams”: no, not, n’t (by considering “n’t”, we included

words such as “don’t” or “doesn’t”). We then carried out analyses similar to the previous section, where

we checked (1) the predictive power of negations on contradictions (P(Contradiction | Negation)), and

(2) the predictive power of contradiction on negations, P(Negation | Contradiction), and compare both

of these to statistics for entailment as a baseline. We found (Table 8.7) that the presence of a negation

strongly predicts contradiction in the SNLI dataset (58.4% compared to chance at 33.3%). We also found

that while both numbers are very low, a contradiction predicts the presence of a negation (3.3%) slightly

more strongly than entailment does (1.1%). We also carried out the same analysis for a high-overlap subset
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(top 10,000 highest overlap) of SNLI tomaximize similarity with our comparisons dataset and saw similar

results (Table 8.8). In fact, the presence of negation predicts a contradiction, P(Negation | Contradiction)

= 60.0%, at rates comparable to that in the full dataset, P(Negation | Contradiction) = 58.4%, despite the

much lower base rates of contradiction in this subset of the data. This indicates strong ecological validity

for this heuristic in the high overlap subset of the SNLI dataset.

P(Negation |X) P( X |Negation)

X = Contradiction 3.3% 58.4%
X = Entailment 1.1% 20.0%

Table 8.7: Percentage of entailments split by negation in SNLI dataset.

P(Negation |X) P( X |Negation)

X = Contradiction 1.3% 60.0%
X = Entailment 0.1% 7.5%

Table 8.8: Percentage of entailments split by negation in high overlap SNLI subset.

Summary of heuristics

We found evidence for three heuristics that explain the bulk of the patterns seen in the performance of

InferSent on our Comparisons dataset, all of which are ecologically valid in the SNLI dataset. First, we

identified the overlap heuristic where a large overlap in words between two sentences leads InferSent to

not classify them as contradictions. Second, we identified the antonyms heuristic and the negation heuristic,

where the premise and hypothesis differ in the presence of an antonymor a negation, which leads InferSent

to classify them as contradictions.

These illustrate a disproportionate dependence on lexical (rather than relational) meaning in the repre-

sentations and decision rules used by InferSent. While these heuristics serve well in certain domains, for

example in SNLI, they don’t amount to amore general encoding of entailment and contradiction between

sentence pairs, as evidenced by InferSent’s poor performance on our Comparisons dataset.
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The analysis so far has highlighted word-level heuristics that InferSent might be using. Yet the confu-

sionmatrix results (Figure 8.3) show a slight asymmetry, indicating at least minor multi-word effects. This

suggests that InferSent might be using some (potentially also heuristic) encodings for word order. How-

ever, a systematic analysis of the effect ofword order, and howmuch variance such heuristicsmight explain,

is challenging due to the combinatorial explosion in the number of possibilities. We leave a thorough in-

vestigation of this to future work.

8.5 Augmenting the learning environment

The foregoing results suggest that such ecological validity of simple heuristics in the SNLI training data

(InferSent’s learning environment) could explainwhy InferSent acquires themover amore abstract, system-

atic representation of the relations between words in a sentence. This leaves open the question of whether

architectures such as InferSent are capable of learning the abstract relational rules needed to succeed at our

task given a different training set where simple heuristics no longer explain so much of the variance. RNN

architectures like the one in InferSent can in theory represent the relational structure required to encode

the abstract rules of the sort in Table 8.1 (see Section ‘Models for sentence embeddings’ for details). But

how might we get them to learn and use them? In this section, we explore this question by training the

InferSent model on part of the Comparisons dataset, and testing on a held-out subset of it. This serves

to test whether simple training on examples of the rules in Table 8.1, will enable InferSent to encode some

abstract relational rules.

The total training subset of our Comparisons dataset consists of 40k sentence pairs (7% the size of the

550k pair SNLI training set). Validation and test sets consist of 2000 sentence pairs each. There are no

overlapping sentence pairs between any of these sets, therefore simplymemorizing the training set will not

allow good test performance. Good test performance requires the encoding and utilization of an abstract

relational rule.

We started with the original InferSent embeddings already trained on the SNLI dataset, and then fine-

tuned it on our newComparisons dataset using the same protocols used in65 to train InferSent. Results are

shown in Table 8.9. We found that using this method, performance on the SNLI data task degrades over
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Epoch Performance (%)
Train(Comp) Test(Comp) Test(SNLI)

0 47.81 45.36 84.84
13 99.91 99.8 56.37

Table 8.9: Results of fine-tuning InferSent on the Comparisons dataset.

the course of fine-tuning on the new Comparisons dataset from 84.84% to 56.37%. This points to over-

fitting to the Comparisons data, at the cost of representing information necessary for SNLI. We found

however, that performance on the Comparisons test set is much higher (99.8 %) than when trained only

on SNLI (47.81%). Note that this test set consists of sentence pairs InferSent has never seen before. We

thus find that the model architecture for InferSent, given the right training data, can encode some form

of abstract relational structure that allows it to learn rules of the form in Table 8.1 and apply them to new

sentence pairs – in particular sentence pairs with Xs, Ys and Zs that it has never seen in that combination

before.

Epoch Performance (%)
Train(Combined) Test(Comp) Test(SNLI)

0 33.33 33.33 33.33
12 90.99 100.00 84.96

Table 8.10: Results of retraining Infersent on both SNLI and the Comparisons dataset.

We then checked whether InferSent can represent this relational structure without losing the informa-

tion necessary for SNLI.We startedwith an untrained network, and then trained on an augmented version

of the original training data. Here, examples from the SNLI training set were randomly interleaved with

examples from our Comparisons training dataset, otherwise using the same training protocols reported

in65. The test results are reported in Table 8.10. We found that the accuracy obtained this way on the

SNLI test set (84.96 %) is comparable to the model trained only on SNLI (84.84 %). Moreover, test accu-

racy on the Comparisons dataset is close to perfect (99.55 %) and is much higher than the model trained

only on SNLI (47.81 %). This establishes that in this case the model has enough capacity to achieve high

performance on specially designed edge-cases like the Comparisons dataset, without loss of performance
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on the more general SNLI dataset.

This result also verifies that the heuristics we find in the original InferSent are an ecologically rational re-

sponse to a training environment that licenses these ‘shortcut’ strategies, and not because of shortcomings

in representational or learning abilities of themodel itself. This points to the benefits of understanding the

learning environment in greater detail, and potentially including specially designed data to guard against

incorrect heuristics that don’t generalize. Research on the generation of adversarial examples targets this

intuition. The idea is to have a separate ‘adversarial’ model that generates edge-case training examples

optimized to try and fool the main model into giving the wrong answer 167,491. It does so by generating

examples that violate the heuristics the main model has learned from training thus far. Subsequently, the

training environment for the model is augmented to include these edge cases making the current heuris-

tics no longer ecologically valid. The main model therefore updates its representations and decision rules

accordingly and the process is continued. Our work provides some insight into how we can leverage a

top-down understanding of the structure of language and systematic stimulus design, to generate such

edge-case training data and potentially improve the representations learned by machine learning systems.

A key hurdle for the scalability for such augmentation as a solution to improving artificial representa-

tions of language however is that there are an infinite number of possible stimuli, with brand new combi-

nations of words that may never have been encountered before. No finite amount of augmentation will

allow a system to represent and process this infinite space of natural language sentences unless it can also

generalize its knowledge gained from the examples observed thus far to new examples. In this section we

saw that InferSent can generalize rules like those in Table 8.1 to never previously observed combinations of

X, Y and Z to performwell on the test set of the Comparisons dataset. In the following sections we further

discuss the generalization capacities of the representations learned by InferSent, and focus in particular on

their differences and similarities to human generalization.

8.6 Generalization

An important and well-studied aspect of human-like representations is that rules learned with one set of

tokens can be systematically generalized to other tokens 121,258. In the section on ‘zero-shot reasoning’ we

206



study if our machine-learned representations can perform such generalization to tokens that have never

previously been observed. More often however, the tokens to which we want to generalize learned rules

have previously been observed, but simply in a different context. The historical contexts of tokens can

determine some of their properties – like syntactic category, and semantic content – which in turn inform

how humans generalize rules to them, sometimes deviating from entirely systematic generalization. In our

section on ‘context-tying’, we examine how the historical context of tokens influences systematic general-

ization in our machine-learned representations, and how these effects compare to those in humans.

Throughout this section, wewill only consider sentence pairs that are similar in structure to ones in our

Comparisons dataset, and will no longer consider performance on SNLI.Wewill predominantly be study-

ing the model that has been trained jointly with our Comparisons dataset in addition to SNLI (referred

henceforth to as the augmented-InferSent model).

8.6.1 Zero-shot reasoning

Zero-shot reasoning is the ability to solve tasks involving a term that has never been seenbefore. This (often

also called zero-shot learning) has commonly been used as a test for systematicity261 – a human can carry

out inferences like “Anne is more boffy than Bob” entails that “Bob is less boffy than Anne” without ever

having encountered the word “boffy” before.

But this ability requires the representation learned to be abstract, and not be tied to the Xs, Ys, and

Z’s seen in training. Instead it has to encode encode an abstract relational rule where “X is more Y than

Z” entails “Z is more Y than X” for all possible X, Y and Z, irrespective of their specific values. If the

representation are tied to the observed values ofXs, Ys andZs and cannot generalize to new values for these,

each possible X, Y and Z has to have occurred in the training dataset. However, these can be arbitrarily

complex (e.g., “The old woman with a flower in her hair is more deliriously happy than the tall young

man wearing the blue bowler hat” implies that “The tall young man wearing the blue bowler hat is less

deliriously happy than the old woman with a flower in her hair”). Ensuring that every possible such X, Y

and Z have been seen in the training data is impossible, and this kind of generalization is key to human-like

language understanding.
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In this section we consider the performance of the augmented-InferSent model. We already know that

this model performs well on both SNLI, and generalizes to new combinations of X, Y, and Z in our Com-

parisons dataset (see Table 8.10), where each X, Y and Z have previously been seen. In this section, we

analyze its ability to generalize to 3 different kinds of Xs and Zs that have never been encountered during

training.

• Held out nouns: Nouns (from the GloVe dataset) that never occur in the training data (neither
SNLI nor our Comparisons dataset).

• Made up “words”: Directly using a 300 dimensional vector randomly sampled from an uncorre-
lated Gaussian distribution, as a stand-in for a real GloVe vector.

• Long noun phrases: The Xs and Zs used in training as part of the Comparisons dataset were of the
type “the man”. Here we generate longer noun phrases of the form “the grumpy man in front of
us” consisting of randomly sampled adjectives, nouns and prepositional phrases.

For each sub-type in the Comparisons dataset (same, more-less and not types), we generated a test set

of 1,000 sequences by substituting Xs and Zs of the above kinds. The Ys were sampled in the same way

as in the Comparison dataset (random adjectives that appear in SNLI). We then tested on these sentences,

and reported the average accuracy. Note that not only had these specific sentences (combinations of X, Y

and Z) never been seen during training, even the individual Xs and Zs had not been seen. We found that

InferSent generalizes to all three new kinds of Xs and Zs quite well (Table 8.11). The held-out nouns are

the most similar to the Xs and Zs seen during training since they are also exactly one word, and are nouns

sampled from GloVe. It is notable that generalization performance with these is comparable to that with

the very different kinds of Xs and Zs such as themade-upwords, or longer noun phrases, indicating a fairly

abstract representation of relational rules that are not tied to the specific value of X and Z.

Test set InferSent (%) augmented-InferSent (%)

Held-out nouns 47.9 82.0
Made up words 48.0 83.2
Long noun phrases 49.1 84.9

Table 8.11: Zero-shot reasoning: Performance on previously unobserved Xs and Zs.
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This indicates that the representation learned by augmented-InferSent is partially abstract and compos-

able, allowing some systematic generalization to a variety of Xs and Zs that have never been seen before. In

the next section we further probe contextuality of generalization and how that interacts with the training

set / learning environment, making comparisons to human generalization.

8.6.2 Context Tying

We saw in the previous section that augmented-InferSent has some of the the central human-like capacity

of zero-shot reasoning. This indicates some systematicity in its representations. However, even humans

do not always succeed at fully systematic generalization. In this sectionwe investigate these exceptions and

qualifications to the widest interpretation of systematic generalization, focusing on the role of context in

generalization. We do this in two ways: using type violations and biased exposure.

Type violations

One extreme of learning a purely abstract rule like in Table 8.1 is to be completely insensitive to any prop-

erties of the Xs, Ys and Zs, and generalize this rule to all possible tokens. However, this very strong gener-

alization may not always match human intuitions. For example the sentence pair

Premise: The punctual is more cheerful than the man

Hypothesis: The punctual is not more cheerful than the man

does not seem to have a right answer. The rule applies easily only to Xs, Ys and Zs that are of the right type

– in this case the right syntactic category.

While syntactic structure is not directly provided to the embedding model, some notion of syntactic

category will be implicit. Information about the syntactic category of a word can be gleaned from its con-

texts, i.e. the other words around it61,364,430, and in some cases can be decoded from word embeddings

directly 349.

We investigated generalization of rules in augmented-Infersent to test items which, unlike in the previ-

ous section, had been previously seen, but had only occurred in a different syntactic role (i.e., a different

context). We generated a test set of ungrammatical sentences using Xs and Zs that are random non-nouns,

209



in our case random adjectives from SNLI. Crucially, these words had been seen before, but never in the po-

sition/context that X andZ occupy in the Comparisons dataset, since appearing in those positions violates

syntax. We then evaluated the performance of the augmented-InferSent model in the same way as in the

previous section on zero-shot generalization. We found that accuracy on such sentence pairs is low, giving

poor performance (Table 8.12). This indicates that the rules learned, though at least partially abstract as

indicated by generalization to held-out nouns, come with restrictions on the type of (known) items they

will apply to. This follows closely how humans generalize – that learned rules don’t generalize indiscrim-

inately to all tokens, but rather only within some fixed categories. These categories in turn, like syntactic

categories, can be gleaned from the contexts in which these tokens usually appear. In the next section, we

examine the role of semantic content in the context of tokens, and how that influences generalization.

Test set InferSent (%) augmented-InferSent (%)

Held-out nouns 47.9 82.0
Non-noun words 47.9 49.3

Table 8.12: Type violations: Performance with tokens from the wrong syntactic category, versus with held-out tokens from the
right syntactic category

Biased exposure

In this section, wemanipulate the context of various tokens, without violating the syntactic rules, to study

its effect on generalization. In all the augmentations we have used so far, some token X is equally likely to

occur in the context of a same-type sentence pair as it is in the context of a more/less-type sentence pair.

Similarly, X is as likely to occur in the context where it is ‘more cheerful than the man’ as it is to occur in

the context where it is ‘less cheerful than the man’. Therefore, apart from the restrictions of syntactically

correct placement, there is no additional structure aroundwhich contexts which tokens occur in – they are

all randomly distributed. However, in the real world, tokens are not uniformly sampled into contexts even

within constraints of syntax; a word is muchmore likely to be sampled repeatedly in certain contexts than

others. This is because the appearance of tokens in naturally occurring sentences is not determined solely

by their syntactic role, but also by their semantic role. For example, one is more much likely to encounter
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the sentence “broccoli is more nutritious than candy” than the sentence “candy is more nutritious than

broccoli”, since one is true of the real world, and the other is not. Nonetheless, the premise “candy is

more nutritious than broccoli” still logically entails the hypothesis “broccoli is less nutritious than candy”.

Statistics of how often certain implications and inferences are made in the learning environment (that will

be reflected in semantic beliefs about the real-world) can interfere with such logical inferences in humans

in both deductive 107 and probabilistic 109 reasoning. This is often termed ‘belief bias’.

In this section, we test if the representations we are studying exhibit belief bias. We manipulate the

uniformity in the co-occurrence of tokens with contexts (subject to syntactic constraints), and examine

if a newly augmented InferSent model can generalize a token it has seen in one context, to cases where it

appears in a different context. We compare this to a zero-shot control condition, where the test token has

never been seen before.

To this end, we first generated variants of our Comparisons dataset where tokens are no longer uni-

formly sampled into contexts. We considered only two sub-types of the comparison types summarized in

Table 8.1: the same-type (C2) and the more/less-type (C1). These consist the two contexts C1 and C2 in

which tokens can appear. Noun phrases were generated using the same procedure used for the long noun

phrases in the section on zero-shot reasoning—phrases (tokens) of the form “the grumpy man in front of

us”. These tokens were then randomly divided into T0-type and T∗-type (460 each). Therefore there is no

structural difference between the the T0 and T∗ tokens, only the context in which they are seen will differ

across conditions.

We built four sets of sentence pairs that vary in their context-token combination: C2T0 consisted of

combinations of T0 tokens in a C2 context, so on and so forth for C2T∗, C1T0, and C1T∗. Each such

context-token combination set was independently divided into train and test sets (each of size 5000). The

sentence pairs in each of the four test sets had never been seen before in any of the four training sets.

We augmented the original InferSent embeddings with different combinations of samples from the

four different train sets.* We then compared their performance on all four of the test sets to examine

*In this experiment we only make comparisons between the performances of differently augmented models,
rather than considering the overall performance like in previous experiments. The influence on performance from
the SNLI training data is irrelevant since it will affect all four augmented models equally. Therefore we can neglect
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how different context-token combinations seen during training influenced test generalization. The three

different embeddings that result are as follows:

• Zero-shot control condition: Only the T0 tokens were seen in training; no T∗ token were seen at
all. Therefore testing with tokens from T∗ is analogous to zero-shot reasoning. The training set
consisted of the full training sets fromC1T0 andC2T0.

• Experimental conditions: BothT0 andT∗ tokenswere seen in training, therefore testingwith tokens
from T∗ is not analogous to zero-shot reasoning. However, the contexts in which T0 and T∗ tokens
appear during training differed. There are two different embeddings we trained of this kind.

– Exposed–C1T∗ : This embedding saw T0 tokens in both C1 and C2 contexts (as with the
control condition), and additionally also saw T∗ tokens – but only in the C1 context. In
order to balance the number of training examples from each context between conditions,
the training set consisted of the full training sets from C2T0 and half (randomly selected) of
the training set from each of theC1T0 andC1T∗ context-token combination sets.

– Exposed–C2T∗ : This embedding saw T0 tokens in both C1 and C2 contexts, but saw T∗

tokens only in theC2 context. The training set was balanced across contexts here as well.

Test set Performance (%)
Zero-shot Exposed–C1T∗ Exposed–C2T∗

C1T0 + C2T0 97.44 97.02 98.0
C1T∗ 95.72 99.7 61.16
C2T∗ 95.78 67.71 99.96

Table 8.13: Biased exposure: Results from InferSent embeddings augmented with different training sets that manipulate the
co-occurrence of context and token.

All three models received the same number of training examples, with equal numbers of sentence pairs

from both contexts C1 and C2. They all also saw T∗ noun phrases appear in both contexts. The three

models only differed in which contexts T∗ noun phrases appeared during training. The control model

never saw T∗ noun phrases, Exposed–C1T∗ only saw them in the C1 context and Exposed–C2T∗ only

saw them in the C2 context. All of these were then tested on the same held-out test set. We see from

SNLI performance and carry out our experiments using fine-tuned augmentation rather than full retraining (see the
Section ‘Augmenting the learning environment’ for details on these). This is computationally a lot cheaper.
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Table 8.13 that all three models generalize well to held-out test examples involving previously unobserved

combinations of T0 noun phrases in both contexts (first row). This is consistent with our initial results

on augmentation (see section ‘Augmenting the learning environment’). Further, the control (zero-shot

reasoning) condition that never saw T∗ noun phrases in training generalizes well to all the test examples

with T∗ noun phrases (first column). This is consistent with our results on zero-shot generalization (see

section ‘Zero-shot reasoning’).

We now turn to generalization performance when tokens were seen before but only in a specific context

(second and third columns in Table 8.13). We discuss the results for themodel Exposed–C1T∗ (that saw T∗

noun phrases in C1 type comparisons), a symmetric discussion applies also to Exposed–C2T∗. W found

that Exposed–C1T∗ performs well on held-out test examples from theC1T∗ category (99.7 %) – as consis-

tent with our original experiments with augmentation. However, we found that it fails to generalize very

well to T∗ type noun phrases in theC2 context, with a significant drop in performance (67.71 %). The cru-

cial comparison is that this low performance is also significantly worse that that of the zero-shot control on

the same test set (95.78 %). Neither of these have seen T∗ phrases in theC2 context – yet the control gener-

alizes very well, while the Exposed–C1T∗ fails to. This indicates that while the representations learned can

generalize well to previously unseen tokens, this generalization is poorer to tokens that have in fact been

seen before, but only in a different context.

This indicates that our representations do learn something akin to belief bias, where the context in

which tokens have been seen (even within the right syntactic category) can influence how abstract logical

rules (like in Table 8.1) generalize to them. This suggests potential directions for research onmodeling how

belief bias in humans arises. However, it is crucial to point out that although humans do exhibit such con-

text tying, the effects are mostly observed in children 110 and under time pressure / cognitive load 108. The

co-existence of such a fast heuristic strategy (that potentially suffers from belief bias), and a slower delibera-

tive strategy (that can perform abstract reasoning) is a well-studied and popular model for representations

and decision rules in humans 108,232,187. Thus, although people have a tendency towards belief bias, they are

able to overcome it and engage in abstract reasoning, which our machine-learned representations cannot

do.
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This raises a new concern about the scalability of augmentation as a general approach to learning sys-

tematic representations in such tabula rasa machine-learning systems. There are infinitely many possible

sentences that all follow the rules of syntax, so observing tokens in contexts that one has not often seen

them in, but where they are syntactically valid, is likely to occur often. Our new findings show that while

zero-shot reasoning to previously unobserved tokens works in certain cases, these tabula rasa systems may

tie an observed token to the small fraction of contexts in which it has been seen. This hinders generaliza-

tion to cases where this token occurs in a new context. In order for every token to have been observed in

every context, a combinatorially large amount of augmented training data would be required, potentially

making this approach unfeasible for achieving the kinds of systematic representations humans have.

8.7 Discussion and Future Work

In this paper, we carried out a case study in the use of methods from cognitive science and psycholin-

guistics to better understand machine-learned representations. We developed minimal cases in a natural

language inference task that test for some aspects of abstract relational structure in sentences. We used

this diagnostic tool on large-scale state-of-the-art sentence embeddings65 to not only demonstrate its lack

of abstract composable structure, but also provide insight into the representations and decision criteria

actually learned. This approach led us to isolate the use of some simple heuristics, which we then traced

to structural regularities in the training distribution. This allowed us to demonstrate the strong effect the

training data has on the representations learned. We then augmented this training environment with so-

called adversarial examples such that simple heuristics like the ones we found are no longer ecologically

valid. We found that such augmentation leads the system to learn some forms of abstract relational struc-

ture. Notably, we found that one of the traditional holy grails of systematicity —zero-shot generalization

of learned rules to new, previously unseen words—can be partially achieved using appropriate augmen-

tation. Further tests, however, revealed limitations to the breadth of this generalization. We found that

while zero-shot generalization to previously unseen words works, generalizations to words that have previ-

ously been seen in a different context, suffers. This gives us another measure for the extent of systematicity

in representations—a phenomena we call ‘context-tying’. We discussed the relationship between this ef-
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fect and findings in human cognitive psychology where semantic beliefs about the real-world can interfere

with flexible inferences supported by abstract logical representations 106. This parallel suggests new ways

tomodel this psychological phenomena75. The presence of context-tying in themachine-learned represen-

tations indicates that combinatorially large amounts of augmentation will likely be required for a tabula

rasa unstructured neural network model to learn an entirely systematic representation from data.

These results suggestmany directions for futurework. We showed how the issue of context-tying bodes

poorly for the scalability of using only training set augmentations to achieve human-like systematic repre-

sentations. Recent work, however, suggests such adversarial mechanisms in the human brain 138. This mo-

tivates further research onhow this approachmight bemademore scalable. We studied the representations

learned from a fixed amount of augmentation and training. An important step forward is to better under-

stand how systematicity in these representations evolves over the course of augmented training, and exactly

how much augmentation is really needed. Another important problem is to understand what augmenta-

tions work best. To that end, a promising direction is to integrate our approach, where augmentations

are generated using existing knowledge about analogous representations in humans, with approaches that

learn to generate such adversarial augmentations 235,167,491.

Human infants are not as tabula rasa as models like InferSent but rather encode useful inductive bi-

ases 308,347,62,278,405. Building such biases into ourmodels 261,126,96,17 is a promising direction towards scalably

learning systematic representations. We also showedhowanalysis and controlled testing for heuristic strate-

gies in the learning environment can provide rich insights into the representations learned. Such analyses

could also be used to improve learning and subsequent performance by leveraging this underlying struc-

ture421,422,161,296. Finally, we leverage methods from cognitive psychology to introduce a new structured

test dataset (the Comparisons dataset) as well as a newmetric (context-tying) for sentence representations.

Rather than the traditional single-dimensionalmetrics of the accuracy achieved on ad-hoc test datasets, our

approach provides insights into the kinds of mistakes made and therefore a more principled and nuanced

ways to benchmark artificial systems against humans480,290,257,280,300,164. A metric like context-tying is not

bound to the domain of language, and can also be used to benchmark systematicity in other domains that

benefit from abstract compositional representations – like scene understanding 335,224 or structured plan-
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ning 55,424. Future work should pursue other such diagnostic metrics, to build towards a comprehensive

suite of testable criteria for exactlywhat constitutes human-like representations, and also to further inform

which aspects of these we wish to emulate in artificial systems.
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9
Leveraging ecological rationality to learn how

to learn

The study of the role of the environment in the kinds of inference strategies intelligent systems learn opens

up the possibility of leveraging this insight to build artificial systems with desirable learning properties. In

the previous Chapter we saw how standard machine-learning approaches – which are based on optimiza-

tion of a cost function in expectation over several training examples – are susceptible to structure in the

space of queries, and can learn ecologically rational heuristics. We also saw that augmentations to the en-

vironment that alter the ecological validity of the original heuristics leads to more generalizable solutions.

This motivates a new direction of research. Traditional approaches to building artificial intelligence focus

on engineering newmodels and architectures that canmakemore efficient use of computational resources

to learn complex concepts and behaviors, on fairly standardized datasets. By considering the role of the

environment in shaping inference, we open up a new set of ways to engineer artificially intelligent systems
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by directly manipulating their training environment.

Meta-learning, or ‘learning to learn’ 399,451 is an approach inmachine-learningwhere rather than learning

to perform a single task, systems encounter series of related tasks. Over this experience they learn common-

alities across these related tasks that allow them not only to become better at solving each task at hand, but

also to solve previously unobserved tasks from the same distribution, with little new experience. This

dramatically reduces the sample complexity of machine-learned algorithms, enabling them to perform so-

called ‘few-shot’ learning465,362.

I will focus on a different aspect of meta-learning. In this chapter, I show how one can combine the

frameworkof learning inferenceprocedures itself fromdata, with the insight that the training environment

largely controls the representations acquired, to elicit complex inferencebehaviors fromvery simplemodels

simply by engineering its training distribution.76 In particular, I will demonstrate how a simple neural

network architecture, trainedwith trial and error learning fromreinforcement, can exhibit causal reasoning

and active information seeking behaviors. The absence of causal sensibilities in artificial intelligence has

been a long standing criticismof the current approaches to it likemachine learning. 344,345 I show that agents

trained this way can learn strategies that effectively probe, uncover, and leverage the specific kinds of causal

structure in their environment to perform causal reasoning in related, held-out tasks in order to obtain

rewards. They can also select informative interventions, draw causal inferences from observational data,

and make counterfactual predictions. This work lays the groundwork for causally directed, structured

exploration in artificial intelligence using agents that can perform and causally interpret experiments in

their environments to generate their own data, much the way human children do 189.

I will also discuss how this direction can also offer new insights into human cognition. Discovering

and exploiting the causal structure in the environment is a crucial challenge for intelligent agents and is

present in human children, rats, and even some birds 267,172,171,34,256. However, there is much debate about

the origins and form of such causal reasoning in natural intelligence470,58. The emergence of causal rea-

soning and intervention strategies from simpler reinforcement learning algorithms using a meta-learning

framework provides a possible model for how causal reasoning emerges. Empirical findings in human be-

havioral research also suggest the use of context-dependent heuristic strategies in how adults implement

218



causal inference. Ameta-learningmodel of causal inference could explain some of these findings via similar

mechanisms as those studied previously in this thesis for the emergence of ecologically rational heuristic

strategies in humans and machines (Chapters 7 and 8).

9.1 Meta-learning causal reasoning

Real-world situations often require us to reason about cause and effect. Although causal reasoning has

commonly been touted as an essential component of natural intelligence, characterizing these abilities in

humans and understanding how they emerge and develop through childhood are still active areas of re-

search in cognitive science and psychology470,58.

Empirical work in human developmental research suggests that causal knowledge, and the ability to ac-

quire and exploit it, might not necessarily reflect the operation of some general and innate algorithm, but

instead emerges through learning 398,303,40,56.* Evidence from studies in adult causal reasoning also show

that their causal theory is not entirely normative, and is instead graded and often tends towards associative

reasoning 365,366,112,114. Further, these observed behavioral patterns are not consistent and show significant

variation depending on mechanisms 283, and exposure 254. The theory that causality is learned from experi-

ence offers a potential explanation for these findings – different experiences potentially support different

kinds and extents of causal reasoning, and exact normative causal inferencemay not universally be the best

adaptation to all aspects of the world humans operate in.

This gives rise to the question of what learning mechanisms allow causal understanding to be acquired

from experience. In this work, we demonstrate how causal reasoning can arise in agents trained usingmeta-

learning simply through interactionwith environments that contain causal structure. In particular, we use

a “meta-reinforcement learning” framework95,471. We chose reinforcement learning (RL) as the base learn-

ing paradigm since RL is based on interactions of an agent with the environment through actions. This

allows for interventions which are an essential part of causal reasoning. This methodology has also been

shown to give rise to complex policies that exploit structure in the task distribution, such as negotiating

*While studies suggesting innate causal understanding exist 281,403, it is nonetheless a valuable direction to better
understand how a notion of causality and causal inference might be learned.

219



the explore-exploit trade-off in bandits471,472, using episodic memory 375, and amortizing Bayesian filtering

to solve sequential problems 339.

A key prediction of learning causality from experience, like in our framework, is that the (causal) in-

ference algorithm learned should reflect the structure of the environment and the data received by the

agent. If normative causal reasoning provides an advantage, and is possible given the observed data and

the structure of the environment, then an agent should be able to learn it. However, other kinds of expe-

riences might lead to different algorithms that vary on the spectrum of how ‘causally-aware’ they are. In

this paper, we test these predictions in 5 experiments. We see that architecturally identical agents can learn

different strategies for reasoning about causal structure depending on the kinds of experiences gathered

during training.

Finally, formal approaches to causal identification (determining the causal graph from data) often re-

quire large amounts of data 130,432,463, and inference in the constructed causal graphs is also computation-

ally expensive 229. In real-world environments, humans operate under time, data, and resource constraints,

dealing with uncertainty in model structure as well as non-stationarity. Agents that learn aspects of the

learning algorithm directly from experience will adapt to statistical structure in their specific environment

and task, and could utilize useful abstract priors (or inductive biases) from other episodes that can be dif-

ficult to formally specify. Such adaptations amortize much of the computation over previous experience

and could allow better performance than formal approaches under ecological constraints75,145,155,270,452.

The purpose of thiswork is not to propose a new algorithmic solution to causal inference per se. Rather,

we highlight that this is the first demonstration of causally-aware inference procedures emerging from sim-

ple reinforcement learning procedures in anunstructuredmodel through interactionwith an environment

the rewards causal understanding. This demonstrates that structured training environments and ecolog-

ical rationality in machine learning can be leveraged to give rise to complex behaviors. Further, we argue

that our meta-learning approach has compelling links to human causal reasoning in terms of a) how a the-

ory of causality could be learned, b) the graded notion of causality in humans, and c) resource efficiency by

meta-learning inductive biases. Resource efficient causal inference based on leveraging statistical structure,

is also useful for and an active area of research in machine learning e.g. 24,202,287,342,309.
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9.2 Background

9.2.1 Related Work

Goodman et al. 169 demonstrated how an abstract notion of causality in humans can be learned from ex-

perience, with hierarchical Bayesian inference. Our approach is similar to this as meta-learning can also be

framed as hierarchical Bayesian inference 173. However, these approaches provide complementary advan-

tages: we discuss in later sections how the meta-learning approach outlined here can be combined with

more structured approaches to causal inference, to best leverage these complementary advantages. While

formal theory learning (as in Goodman et al. 169) is systematic and generalizes across domains, it requires

the pre-specification of discrete primitives and an expensive zero order (stochastic search) optimization

to learn the correct theory built from these primitives.402,46 A restrictive choice of primitives limits the

space of possible theories, while a generous choice makes the optimization very expensive. This approach

also leaves open the question of the origin of these discrete primitives and how they might be plausibly

implemented in the brain. Our method avoids these assumptions and instead uses a first order (gradient-

based) optimization method that leverages learning signals from the environment, thus discovering emer-

gent structure directly from experience 298. This also provides a basis for modeling the domain/function

specificity 254,283 seen in humans. Since our model is implemented with a deep neural network, which can

be universal approximators416,215, it can implement different graded causal theories that don’t conform

to purely normative accounts, in a neurally-plausible distributed representation. This could give rise to

graded causal reasoning behaviors analogous to those seen in humans 365,366,112,114.

Bengio et al 24 propose a meta-learning approach to utilize explicit, pre-specified statistical properties of

interventions to isolate and disentangle causal variables in a supervised learning setting. Our work shows

how a spectrum of ‘causally-aware algorithms’ can arise from utilizing several different kinds of implicit,

unspecified statistical structure in the environment. Our reinforcement learning approach further allows

the agent to directly interact with the environment to also simultaneously learn an experimental policy

that utilizes this underlying structure. Denil et al 85 showed that deep reinforcement learning agents can

learn to perform actions to gain knowledge about latent, physical properties of objects, but do not explore
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explicit causal inference.

9.2.2 A brief introduction to causal reasoning

Causal relationships among randomvariables canbe expressedusing causal Bayesian networks (CBNsG) 345,432,80.

Each node Xi corresponds to a random variable, and the joint distribution p(X1, . . . ,XN) is given by

the product of conditional distributions of each node Xi given its parent nodes pa(Xi), i.e. p(X1:N) =∏N
i=1 p(Xi|pa(Xi)).

The edges of G encode causal semantics: a directed path from Xc (cause) to Xe (effect) is called a causal

path. The causal effect of Xc on Xe is the conditional distribution of Xc given Xe restricted to only causal

paths. This restriction is an essential caveat, since the simple conditional distribution p(Xe|Xc) encodes

only correlations (i.e. associative reasoning). Intervening on a node Xc corresponds to removing its con-

nection to its parent nodes pa(Xc), and fixing it to some valueC yielding a new CBN G→Xc=C. The causal

effect of Xc on Xe is given by the conditional distribution in this new CBN. This distribution is denoted

p→Xc=C(Xe|Xc = C) *.

An example of CBN G is given in Figure 9.1a, where E represents hours of exercise in a week,H cardiac

health, andA age. Random variables are denoted by capital letters (e.g., E) and their values by small letters

(e.g., e). The causal effect of E on H is the conditional distribution restricted to the path E → H, i.e. ex-

cluding the path E← A→ H. The variable A is called a confounder, as it confounds the causal effect with

non-causal statistical influence.

Simply observing cardiac health conditioning on exercise level from p(H|E) (associative reasoning) can-

not answer if change in exercise levels cause changes in cardiac health (cause-effect reasoning), since there

is always the possibility that correlation between the two is because of the common confounder of age.

The causal effect of E = e can be seen as the conditional distribution p→E=e(H|E = e)† on the inter-

*In the causality literature, this distribution would most often be indicated with p(Xe|do(Xc = C)). We prefer
to use p→Xc=C(Xe|Xc = C) to highlight that intervening on Xc results in changing the original distribution p by
structurally altering the CBN.

†In the causality literature, this distribution would most often be indicated with p(H|do(E = e)). We pre-
fer to use p→E=e(H|E = e) to highlight that intervening on E results in changing the original distribution p, by
structurally altering the CBN.
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Figure 9.1: (a): A CBN G with a confounder for the effect of exercise (E) on heath (H) given by age (A). (b): Intervened
CBN G→E=e.

vened CBNG→E=e resulting from replacing p(E|A)with a delta distribution δ(E− e) (thereby removing

the link from A to E) and leaving the remaining conditional distributions p(H|E,A) and p(A) unaltered

(Figure 9.1b). The rules of do-calculus 345,346 tell us how to compute p→E=e(H|E = e) using observations

from G. In this case p→E=e(H|E = e) =
∑

A p(H|E = e,A)p(A)*. Therefore, do-calculus enables us

to reason in the intervened graph G→E=e even if our observations are from G. This is the kind of causal

reasoning possible in our observational data setting.

Such inferences are always possible if the confounders are observed, but in the presence of unobserved

confounders, formanyCBN structures the onlyway to compute causal effects is by collecting observations

directly from the intervened graph, e.g. from G→E=e by fixing the value of the variable E = e and observ-

ing the remaining variables—we call this process performing an actual intervention in the environment.

In our interventional data setting the agent has access to such interventions.

Counterfactualreasoning Cause-effect reasoning can be used to correctly answer predictive ques-

tions of the type ”Does exercising improve cardiac health?” by accounting for causal structure and con-

founding. However, it cannot answer retrospective questions about what would have happened. For

example, given an individual i who has died of a heart attack, this method would not be able to answer

questions of the type ”What would the cardiac health of this individual have been had she done more ex-

ercise?”. This type of question requires reasoning about a counterfactual world (that did not happen). To

do this, we can first use the observations from the factual world and knowledge about the CBN to get an

*Notice that conditioning on E = ewould instead give p(H|E = e) =
∑

A p(H|E = e,A)p(A|E = e).
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estimate of the specific latent randomness in the makeup of individual i (for example information about

this specific patient’s blood pressure and other variables as inferred by her having had a heart attack). Then,

we can use this estimate to compute cardiac health under intervention on exercise. This procedure is called

theAbduction-Action-Prediction Method 346 and is described below.

Assume, for example, the followingmodel forG in Figure 9.1: E = wAEA+η,H = wAHA+wEHE+ ε,

where theweightswij represent the known causal effects inG and ε and η are terms of (e.g.) Gaussian noise

that represent the latent randomness in the makeup of each individual. These noise variables are zero in

expectation, so without access to their value for an individual we simply use G: E = wAEA,H = wAHA+

wEHE to make causal predictions. Suppose that for individual i we observe: A = ai, E = ei, H = hi.

We can answer the counterfactual question of ”What if individual i had done more exercise, i.e. E = e′,

instead?” by: a)Abduction: estimate the individual’s specific makeup with εi = hi − wAHai − wEHei, b)

Action: set E to more exercise e′, c) Prediction: predict a new value for cardiac health as h′ = wAHai +

wEHe′ + εi.

9.2.3 Memory-based Meta-learning

Meta-learning refers to a broad range of approaches in which aspects of the learning algorithm itself are

learned from the data. Many individual components of deep learning algorithms have been successfully

meta-learned, including the optimizer 10, initial weight parameters, 116, ametric space465, anduse of external

memory 395.

Following the approach of95,471, the entire inner loop of learning is implemented by a recurrent neural

network (RNN), andwe train the weights of the RNNwithmodel-free reinforcement learning (RL). The

RNN is trained on a broad distribution of problems which each require learning. Consider a distribution

D over Markov Decision Processes (MDPs). We train an agent with memory (in our case an RNN-based

agent) on this distribution. In each episode, we sample a taskm ∼ D. At each step twithin an episode, the

agent sees an observation ot, executes an action at, and receives a reward rt. Both at−1 and rt−1 are given

as additional inputs to the network. Thus, via the recurrence of the network, each action is a function

of the entire trajectoryHt = {o0, a0, r0, . . . , ot−1, at−1, rt−1, ot} of the episode. Because this function
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is implemented by the neural network, its complexity is limited only by the size of the network. When

trained in this way, the RNN is able to implement a learning algorithm capable of efficiently solving novel

learning problems in or near the training distribution.

Learning the weights of the RNN by model-free RL can be thought of as the ”outer loop” of learning.

The outer loop shapes the weights of the RNN into an ”inner loop” learning algorithm, which plays out

in the activation dynamics of the RNN and can continue learning even when the weights of the network

are frozen. The inner loop algorithm can also have very different properties from the outer loop algorithm

used to train it. For example, this approachhas beenused tonegotiate the exploration-exploitation tradeoff

inmulti-armedbandits95,471, learn algorithmswhich dynamically adjust their own learning rates471,472, and

perform one-shot learning using external memory 395. In the present work we explore the possibility of

obtaining a causally-aware inner-loop learning algorithm.

9.3 Experimental setup

Our goal is to demonstrate that causal reasoning can arise from meta-reinforcement learning. Further,

we demonstrate that depending on the kinds of data the agents see during training, the kind of causal

reasoning learned varies. Our agents learn to leverage statistical structure in different kinds of available

information, to carry out different kinds of causal reasoning. In this section, we first briefly formalize how

causal inference depends on the environment,

Different kinds of environments support different kinds of causal reasoning. It is often possible to com-

pute p→Xc=C(Xe|Xc = C) (i.e. causal reasoning) using observations from G*. I investigate this kind of

causal reasoning in Experiment 1 (Observational Environments). However, in the presence of unobserved

confounders (an unobserved variable that affects bothXc andXe), this is, in general , no longer possible 345.

The only way to compute causal effects p→Xc=C(Xe|Xc = C) in this case is by collecting observations

directly from the intervened graph G→Xc=C. In Experiment 2 (Interventional Environments), I investi-

gate this kind of causal reasoning, by allowing agent to perform interventions on the environment. An

*When the CBN G is known, this process can be formalized as do-calculus 345,346. In our case the CBN will not
be directly provided, and the agent must simultaneously perform causal identification using samples from G 202.
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additional level of sophistication comes from counterfactual environments, where the agent must answer

a retrospective question. This requires the additional step of abduction where the individual idiosyncrasy

in the specific case at handmust be inferred and incorporated into the counterfactual prediction. I discuss

these results in Experiment 3 (Counterfactual Environments).

9.3.1 Task Setup

Inour experiments,weuse a simple framework that has somekeyproperties relevant to ecologically realistic

causal reasoning. First, the number of variables over which inference is carried out is small. Second, the

amount of data available is limited. Third, agents can actively seek out information by interactingwith the

environment rather than only receiving passive input. This facilitates future work in drawing parallels to

human causal reasoning, as well as permits a simple and clear demonstration of the effects of interest.

In each episode the agent interacts with a different CBNG withN variables. The structure ofG is drawn

randomly from the space of constraints describedbelow. Each episode consists ofT steps, which are divided

into two phases: an information phase and a quiz phase. The information phase corresponds to the first

T− 1 steps and allows the agent to collect information from G. Note that G is never directly provided to

the agent, but is only observed through T − 1 samples. Further, the agents in the different experiments

are architecturally identical, and give rise to different behavior soley due to the data they receive in the

information phase. The quiz phase, corresponding to the final step T, requires the agent to exploit the

causal knowledge it accumulated during the information phase. In particular, the agent needs to select

the node with the highest value under a random external intervention. The structure of the quiz phase is

exactly the same for all agents in all experiments.

We generate graphs that have N = 5 nodes and sample the adjacency matrix to have non-zero entries

only in its upper triangular part (this guarantees that all the graphs obtained are acyclic). Edge weightswji

are uniformly sampled from {−1, 0, 1}. This yields 3N(N−1)/2 = 59049 unique graphs. These can be

divided into equivalence classes, i.e. sets of graphs that are structurally identical but differ in the permuta-

tion order of the node labels. Our held-out test set consists of 12 random graphs plus all other graphs in

the corresponding equivalence classes, yielding 408 total graphs in the test set. Thus, none of the graphs
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in the test set (or any graphs equivalent to these) have been seen during training.

We sample each node, Xi ∈ R, as a Gaussian random variable. The distribution of parentless nodes

is N (μ = 0.0, σ = 0.1), while for a node Xi with parents pa(Xi) we use the conditional distribution

p(Xi|pa(Xi)) = N (μ =
∑

j wjiXj, σ = 0.1) with Xj ∈ pa(Xi). We also tested graphs with non-linear

causal effects and larger graphs of size N = 6, see Appendix A.5 for details.

A root node of G is always hidden, to allow for unobserved confounders, and the agent can therefore

only ever see the values of the other 4 nodes. These 4 nodes are henceforth referred to as the ‘visible nodes’.

The concatenated values of the nodes, vt, and a one-hot vector indicating the external intervention during

the quiz phase, mt, (explained below) form the observation vector provided to the agent at step t, ot =

[vt,mt]
*.

In both phases, at each step t, the agent chooses to take one out of 2(N − 1) actions. The first N − 1

actions are information actions, and the secondN− 1 actions are quiz actions. Both information and quiz

actions are associated with selecting theN−1 visible nodes, but can only be legally used in the appropriate

phase of the task. If used in the wrong phase, a penalty is applied and the action produces no effect.

Information Phase. The information phase differs depending on the kind of environment the agent

is in – observational or interventional. Here, we discuss the case of the interventional environment.

An information action at = i causes an intervention on the i-th node, setting the value ofXat = Xi = 5

(the value5 is outside the likely range of sampledobservations and thus facilitates learning the causal graph).

The node values vt are then obtained by sampling from p→Xi=5(X1:N\i|Xi = 5) (where X1:N\i indicates

the set of all nodes except Xi), i.e. from the intervened CBN G→Xat=5. If a quiz action is chosen during

the information phase, it is ignored, i.e. the node values are sampled from G as if no intervention has been

made. Furthermore, the agent is given a penalty of rt = −10 in order to encourage it to take quiz actions

during the quiz phase. There is no other reward during the information phase.

The default length an episode is fixed to be T = N = 5, giving an information phase of length of

T − 1 = 4. This episode length was chosen because in the noise-free limit, a minimum of N − 1 = 4

*’Observation’ ot refers to the reinforcement learning term, i.e. the input from the environment to the agent.
This is distinct from observations in the causal sense which we refer to as observational data.
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interventions, one on each visible node, is required in general to resolve the causal structure.

QuizPhase. Thequiz phase remains the same for all the different environments and agents. In the quiz

phase, one visible node Xj is selected at random to be intervened on by the environment. Its value is set to

−5. We chose−5 to disallow the agent from memorizing the results of interventions in the information

phase (which are fixed to+5) in order toperformwell on thequiz phase. The agent is informedwhichnode

received this external intervention via the one-hot vector mt as part of the observation from the the final

pre-quiz phase timestep, T− 1. For steps t < T− 1,mt is the zero vector. The agent’s reward on this step

is the sampled value of the node it selected during the quiz phase. In other words, rT = Xi = XaT−(N−1)

if the action selected is a quiz action (otherwise, the agent is given a penalty of rT = −10).

Active vs Randomconditions. Our agents have to perform two distinct tasks during the informa-

tion phase: a) actively choose which nodes to act on and b) perform casual reasoning based on the obser-

vations. We refer to this setup as the “active” condition. To better understand the role of (a), we include

comparisons with a baseline agent in the “random” condition where the environment ignores the agents

actions and randomly chooses a visible node to intervene upon at each step of the information phase. Note

again that the only difference between agents in these two conditions is the kind of data the environment

provides them.

Two Kinds of Learning. An “inner loop” of learning occurs within each episode where the agent

is learning from the 4 samples it gathers during the information phase to perform well in the quiz phase.

The same agent then enters a new episode, where it has to repeat the task on a different CBN. Test per-

formance is reported on CBNs that the agent has never previously seen after all the weights of the RNN

have been fixed. Hence, the only transfer from the training to test set (or the “outer loop” of learning)

is a learned procedure for collecting evidence in the information phase to perform well in the quiz phase.

Exactly what this learned procedure is will depend on the training environment. We will show that this

learned procedure can include performing different kinds of causal inference, as well as active information

gathering.
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9.3.2 Agent architecture

We used a long short-term memory (LSTM) network213 (with 192 hidden units) that, at each time-step

t, receives a concatenated vector containing [ot, at−1, rt−1,mt] as input, where ot is the observation, at−1

is the previous action, rt−1 the previous reward and mt indicates the external intervention. The outputs,

calculated as linear projections of the LSTM’s hidden state, are a set of policy logits (with dimensionality

equal to the number of available actions), plus a scalar baseline. The policy logits are transformed by a

softmax function, and then sampled to give a selected action.

Learning was by asynchronous advantage actor-critic 311. In this framework, the loss function consists of

three terms – the policy gradient, the baseline cost and an entropy cost. The baseline cost was weighted by

0.05 relative to the policy gradient cost. The weighting of the entropy cost was annealed over the course

of training from 0.25 to 0. Optimization was via RMSProp with ε = 10−5, momentum = 0.9 and de-

cay = 0.95. Learning rate was annealed from 9 × 10−6 to 0, with a discount of 0.93. Hyperparameters

were optimized by performing a coarse grid search (2-4 values) over learning rate, discount factor, and the

number of hidden units in the LSTM. Unless otherwise stated, training was done for 1× 107 steps using

batched environments with a batch size of 1024, using a distributed architecture with roughly 4000 CPUs

for 5 days.

9.3.3 RL Baselines

We can also compare the performance of our agents to two standard model-free RL baselines.

The Q-total Agent learns a Q-value for each action across all steps for all the episodes. The Q-episode

Agent learns aQ-value for each action conditioned on the input at each time step [ot, at−1, rt−1], but with

no LSTM memory to store previous actions and observations. Since the relationship between action and

reward is random between episodes, Q-total was equivalent to selecting actions randomly, resulting in a

considerably negative reward (−1.247±2.940). TheQ-episode agent essentiallymakes sure to not choose

the arm that is indicated by mt to be the external intervention (which is assured to be equal to −5), and

essentially chooses randomly otherwise, giving a reward close to 0 (0.080± 2.077).
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Figure 9.2: Reward distribution for baseline agentsß

9.3.4 Overview of Experiments

Our three experiments (observational, interventional, and counterfactual environments) differ in the prop-

erties of the node values vt that are observed by the agent during the information phase. This also limits

the kinds of causal reasoning possible within each environment. We measure agent performance using a

function of the reward earned in the quiz phase for held-out CBNs. As discussed in the previous section,

choosing a randomnode in the quiz phase results in an expected reward of−5/4 = −1.25 since one node

(the externally intervened one) always has value−5 and the other nodes have on average 0 value. By learn-

ing to simply avoid the externally intervened node, the agent can earn on average 0 reward. Since the quiz

phase requires the agent to predict the outcomeof a previously unobserved intervention, consistently good

performance on this task in general requires the agent to perform causal reasoning. We will see that per-

formance reflects different extents of causal reasoning and depends on the kinds of environments agents

experience. The rewards are normalized by the maximum possible reward achievable with exact causal

reasoning on that test set. Henceforth, we refer to this measure as the “(normalized) performance”. The

maximal possible reward is calculated by computing the true maximum mean value among all the nodes

inG→Xj , whereXj is the node externally intervened upon in the quiz phase. We train 8 copies of each agent

and report the average performance across 1632 episodes (408 held-out test CBNs, with 4 possible external

interventions). 95% confidence intervals are indicated by the error bars.
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9.4 Experiment 1: Observational Environments

In Experiment 1, the agents are in an environment that does not permit any interventions during the in-

formation phase, agents only receive observations from G. This corresponds to passively observing the

world. This setting permits some limited causal reasoning as outlined in Section ??, and we sought to test

if our agents can learn this. We examine this hypothesis by comparing agent performance to that of an

“Associative Baseline”, i.e. the performance obtained by only using correlations in the environment.

In this experiment, we tested 4 agents: ”Observational”, ”Long Observational”, ”Active Conditional”

and ”RandomConditional”. All the agents have the same architecture and employ the same learning algo-

rithms. The only difference between them is the kind of data they have access to.

Observational Agents : In the information phase, the actions of the agent are ignored. The agent

always receives the values of the visible nodes sampled from the joint distribution associated with G. In

addition to the default T = 5 episode length, we also trained this agent with 4× longer episode length

(Long Observational Agent) in order to measure performance when the agent has access to more data.

Conditional Agents : In this case, agents are still not allowed to interact with the environment via

interventions, but they are given access to more informative observations. Specifically, the information

phase actions correspond to observing a world in which the selected node Xj is equal to Xj = 5, and

the remaining nodes are sampled from the conditional distribution p(X1:N\j|Xj = 5). This differs from

intervening on the variableXj by setting it to the valueXj = 5, since herewe take a conditional sample from

G rather than from G→Xj=5. Therefore, this agent still has access to only observational data, but receives

more informative data, since it can observe samples far outside the likely range of observations. We run

active and random versions of this agent as described in Section 9.3.1. Comparing these two settings allows

us to disentangle whether the agent can learn to exercise control over what data it wishes to observe from

the environment by accordingly choosing informative observations.

AssociativeBaseline: This baseline receives the true joint distributionp(X1:N) impliedby theCBNin

that episode and therefore has knowledge of the correlation structure of the environment. In the quiz
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Figure 9.3: Experiment 1. Agents do causal reasoning from observational data. a) Average performance of the agents
tested in this experiment. b) Performance split by the presence or absence of at least one parent (Parent and Orphan respec-
tively) on the externally intervened node. c) Quiz phase for a test CBN. Green (red) edges indicate a weight of+1 (−1). Black
represents the intervened node, green (red) nodes indicate a positive (negative) value, white indicates a zero value. The blue
circles indicate the agent’s choice. Left panel: The undirected version of G and the nodes taking the mean values prescribed
by p(X1:N\j|Xj = −5), including backward inference to the intervened node’s parent. The Associative Baseline’s choice is
consistent with maximizing these (incorrect) node values. Right panel: G→Xj=−5 and the nodes taking the mean values pre-
scribed by p→Xj=−5(X1:N\j|Xj = −5). The Active-Conditional Agent’s choice is consistent with maximizing these (correct)
node values.

phase, this baseline acts solely on this correlational information and chooses the node that has the maxi-

mum value according to p(Xj|Xi = −5)with Xi the node externally intervened upon.

Results

The different agents in this experiment are given access to different kinds of data from the same underly-

ing causal structure during the information phase. We are interested in understanding if agents learn to

leverage this information to perform well on the quiz phase. The main conclusion we reach is that, when

given access to informative observations, our agents can learn to perform a form of causal reasoning using

observational data. The Associative Baseline tracks the best performance that can be achieved using only

knowledge of correlations i.e. without causal knowledge. TheActive-Conditional Agent outperforms this

baseline by a non-trivial margin (Figure 9.3a).

To further demonstrate that this improvement is indeed due to causal reasoning, we partition the test

cases by whether or not the node that was intervened on in the quiz phase has a parent (Figure 9.3b). If

the intervened node Xj has no parents, then G = G→Xj , and doing causal reasoning should afford no

advantage over doing associative reasoning. Indeed, the Active-Conditional Agent performs better than

theAssociative Baseline onlywhen the intervenednode has parents (hatched bars in Figure 9.3b). In Figure

9.3c, we show the quiz phase for an example test CBN.This highlights that theAssociative Baseline chooses
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Figure 9.4: a) Active vs Random Conditional, b)Associative Baseline vs Active Conditional, where intervened node has a
parent

according to the node values predicted by p(X1:N\j|Xj = −5), whereas the Active-Conditional Agent

chooses according the node values predicted by p→Xj=5(X1:N\j|Xj = 5)).

Comparing the performances of the Active and Random versions of the Conditional Agents, we find

that the active Agent’s performance is slightly but significantly (p = 0.003, Figure 9.4a) higher than the

Random Agent. This indicates that when permitted, the agent learns to generate informative observa-

tions. We also trained a third agent that employs the optimal information gathering policy in the noise-

free limit (acting on each visible node exactly once), and obtained a performance slightly but significantly

(p = 0.008, not shown) higher than the Active agent (although still significantly less than optimal causal

reasoning), indicating that the policy learned by the Active Agent is not optimal. But the differences be-

tween the performances of agents with different information gathering policies is very small, indicating

that learning a data-collection policy does not yield a critical benefit when receiving conditional samples in

this small-data regime.

Agents that receive unconditional observations from G, i.e. the Observational Agents (”Observation”

and ”Long-Obs” in Figure 9.3a) performworse than the Active-Conditional Agent. Note that this is to be

expected since these agents receive less diagnostic informationduring the informationphase. However, the

Observational agent is still able to leverage the information from the 4 unconditional samples it receives

and perform better than the random baseline. Further, when given access to more data (the Long-Obs.

agent) the same agent learns to utilize it, yielding better performance.

From Figure 9.3a, we see that while the Active-Conditional Agent performs significantly above the As-

sociative baseline, it far from the performance utilizing full causal reasoning (= 1.0 on our scale). From

Figure 9.3b, we see that this gap is driven mostly by test cases where the intervened node has a parent.
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While the Active-Conditional Agent’s advantage over the baseline comes from these test cases, it is still not

performing optimally on them. Wehypothesize that this is due to the presence of unobserved confounders.

As discussed in Section ??, full causal inference in the presence of confounders is in general not possible

with just observational data. To further investigate this hypothesis, we partition the set of test cases into

those where the intervened upon node has a confounded parent and those with unconfounded parents

(Figure 9.4b). We see that the performance of the Active-Conditional Agent is significantly higher than

the Associative baseline only in cases where the parent is not confounded. Causal inference in the pres-

ence of confounders is only in general possible with interventions. In the next experiment, we discuss the

performance of our agents in an environment that permits interventions.

We also note that the Associative agent has higher performance when the parent of the intervened node

is confounded thanwhen it isn’t (where the performance is not significantly above zero). This could point

to other statistical structure in the environment – for example, if the intervened node has more visible par-

ents (as is true for the graphswithunconfoundedparents inFigure ??), there aremore visible nodes strongly

correlated with it due to (incorrect) backward inferences from child to parent. This could hinder the asso-

ciative agent giving lower performance. These findings highlight that there are often unexpected statistical

trends even in putatively formal settings like our distribution of simple CBNs, that could potentially be

leveraged 221,217 by meta-learning agents.

9.5 Experiment 2: Interventional Environments

In this experiment, we test if agents can learn to perform causal inference from interventions. In partic-

ular, we are interested in performance in the presence of confounders. The interventional environment

allows the agent to intervene on any visible node during the information phase. The agent’s actions corre-

spond to performing an intervention on the selected node Xj and sampling from G→Xj (see Section 9.3.1).

As discussed in Section ??, access to interventional data permits causal reasoning even in the presence of

unobserved confounders, a feat in general impossible with access only to observational data. We test both

active and random versions of the agent (see Section 9.3.1) to disentangle if the agent can also learn to select

informative interventions when the environment permits.
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Figure 9.5: Experiment 2. Agents do causal reasoning from interventional data. a) Average performance of the agents
tested in this experiment. See main text for details. b) Performance split by the presence or absence of unobserved con-
founders (abbreviated as Conf. and Unconf.). c) Quiz phase for a test CBN. See Figure 9.3 for a legend. Here, the left panel
shows the full G and the nodes taking the mean values prescribed by p(X1:N\j|Xj = −5). We see that the Active-Cond
Agent’s choice is consistent with choosing based on these (incorrect) node values. The right panel shows G→Xj=−5 and the
nodes taking the mean values prescribed by p→Xj=−5(X1:N\j|Xj = −5). We see that the Active-Int. Agent’s choice is
consistent with maximizing on these (correct) node value.

9.5.1 Results

The agents tested in this experiment differ from agents in previous experiments only in the kind of data

that they have access to. We see in Figure 9.5a that the Active-Interventional Agent’s performance is better

than the Active-Conditional Agent, achieving close to optimal performance.

0.0 0.2 0.4 0.6 0.8 1.0
Normalized performance

Active

Random

Figure 9.6: Active and Random Interventional Agents

This shows that when given access to interventions, the agent learns to leverage them to perform causal

reasoning. Partitioning the test cases by whether any node has unobserved confounders with other nodes

in the graph (Figure 9.5b), we see that the Active-Interventional Agent performs close to optimal on both

confounded and unconfounded test cases. This confirms our hypothesis that the agent has learned to

perform causal reasoning even in the presence of confounders which the Conditional agents in Experi-

ment 1 could not do. This is highlighted by Figure 9.5c, which shows the quiz phase for an example CBN,

where the Active-Conditional Agent is unable to resolve the unobserved confounder, whereas the Active-

Interventional Agent is able to do so. We also see that while the performance of the Active-Conditional

Agent is significantly higher in unconfounded cases than in confounded ones, it is not as high as the per-
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formance of the Interventional Agent, even though inference in the absence of confounders is in theory

within reach of the conditional agent. This could be because causal inference from observations is more

challenging than from interventions, in our setting. In our framework, the final quiz phase node values

are the negative (with noise) of the values observed, if the quiz phase node is intervened on in the informa-

tion phase*. This makes the decoding process significantly easier than if (as with the Conditional cases),

information has to be integrated across several observations in the information phase to perform well in

the quiz phase. When utilizing the statistical structure of the task and environment, interventions are easy

to learn from. Evidence of such behavior has also been noted in humans 114,112.

Further, we find that the Active-Interventional agent learns to utilize the control it has over what in-

terventions it does, to choose informative interventions: its performance is significantly better than the

Random-Interventional Agent (Figure 9.6). This indicates that when permitted, the agents learns a good

intervention policy to generate informative data. The difference betwee Active and Random is far greater

than in the Conditional case, with theActive Interventional agent reaching ceiling performance. This indi-

cates that in our domain, while causal inference is easier from interventions than observations, it is perhaps

more sensitive to the right intervention policy – learning a policy for information gathering yields a critical

benefit above a random policy, when learning from interventions, in our domain.

9.6 Experiment 3: Counterfactual Setting

In Experiment 3, the agent was again allowed to make interventions as in Experiment 2, but in this case

the quiz phase task entailed answering a counterfactual question. We explain here what a counterfactual

question in our experimental domain looks like. Assume Xi =
∑

j wjiXj + εi where εi is distributed

as N (0.0, 0.1) (giving the conditional distribution p(Xi|pa(Xi)) = N (
∑

j wjiXj, 0.1) as described in

Section 3). After observing the nodesX2:N (X1 is hidden) in the CBN in one sample, we can infer this latent

randomness εi for each observable nodeXi (i.e. abduction) and answer counterfactual questions like ”What

would the values of the nodes be, hadXi instead taken on a different value thanwhatwe observed?”, for any

*We demonstrate in Appendix A.5 that our agents are able to infer from interventions even in non-linear cases
where the decoding is more involved.
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(a) (b) (c)

Passive-Int. Agent Passive-CF Agent0.0 0.5 1.0 1.5 2.0
Normalized performance

Active-Int.

Active-CF

Optimal CF

0.0 0.5 1.0 1.5 2.0 2.5
Normalized performance

C.F. (Distinct)

Int. (Distinct)

Int. (Degen.)

Counterfactual (Degenerate)

Figure 9.7: Experiment 3. Agents do counterfactual reasoning. a) Performance of the agents tested in this experiment.
Note that performance can be above 1.0 since the counterfactual agent can theoretically perform better than the optimal
interventional baseline, which doesn’t have access to noise information. See main text for details. b) Performance split by
if the maximum node value in the quiz phase is degenerate (Deg.) or distinct (Dist.). c) Quiz phase for an example test-
CBN. See Figures in Main text for a legend. Here, the left panel shows G→Xj=−5 and the nodes taking the mean values
prescribed by p→Xj=−5(X1:N\j|Xj = −5). We see that the Active-Int. Agent’s choice is consistent with maximizing on
these node values, where it makes a random choice between two nodes with the same value. The right panel panel shows
G→Xj=−5 and the nodes taking the exact values prescribed by the means of p→Xj=−5(X1:N\j|Xj = −5), combined with
the specific randomness inferred from the previous time step. As a result of accounting for the randomness, the two previously
degenerate maximum values are now distinct. We see that the Active-CF. agent’s choice is consistent with maximizing on
these node values.

of the observable nodes Xi. We test three new agents, two of which are learned: ”Active Counterfactual”,

”Random Counterfactual”, and ”Optimal Counterfactual Baseline” (not learned).

Counterfactual Agents: This agent is the same as the Interventional agent, but trained on tasks

in which the latent randomness in the last information phase step t = T − 1 (where some Xp = +5)

is stored and the same randomness is used in the quiz phase step t = T (where some Xf = −5). While

the question our agents have had to answer correctly so far in order to maximize their reward in the quiz

phase was ”Which of the nodes X2:N will have the highest value when Xf is set to−5?”, in this setting, we

ask ”Which of the nodes X2:N would have had the highest value in the last step of the information phase,

if instead of having the intervention Xp = +5, we had the intervention Xf = −5?”. We run active and

random versions of this agent as described in the main text.

OptimalCounterfactualBaseline: This baseline receives the trueCBNanddoes exact abduction

of the latent randomness based on observations from the penultimate step of the information phase, and

combines this correctly with the appropriate interventional inference on the true CBN in the quiz phase.
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9.6.1 Results

We focus on two key questions in this experiment. (i) Do our agents learn to do counterfactual inference?

The Active-Counterfactual Agent achieves higher performance than the maximum possible performance

using only causal reasoning (Figure 9.7a). This indicates that the agent learns to infer and apply noise

information from the last step of the information phase. To evaluate whether this difference is driven

by the agent’s use of abduction, we split the test set into two groups, depending on whether or not the

decision for which node will have the highest value in the quiz phase is affected by the latent randomness,

i.e. whether or not the node with the maximum value in the quiz phase changes if the noise is resampled.

This is most prevalent in cases where themaximum expected reward is degenerate, i.e. where several nodes

give the same maximum reward (denoted by hatched bars in Figure 9.7b). Here, agents with no access to

the randomness have no basis for choosing one over the other, but different noise samples can give rise to

significant differences in the actual values that these degenerate nodes have.

0.0 0.2 0.4 0.6 0.8 1.0
Normalized performance

1.2 1.4

Active

Random

Figure 9.8: Active and Random Counterfactual Agents

We see indeed that there is no difference in the rewards received by the Active-Counterfactual and

Active-Interventional Agents in the cases where the maximum values are distinct, however the Active-

Counterfactual Agent significantly outperforms the Active-Interventional Agent in cases where there are

degenerate maximum values. This performance increase is very high since in most cases where the maxi-

mum values are degenerate, this maximum value is close to 0.0. Thus, taking the noise into account gives

the Counterfactual agent a huge relative advantage in these cases.

(ii) Do our agents learn tomake useful interventions in the service of a counterfactual task? The Active-

Counterfactual Agent’s performance is significantly greater than theRandom-Counterfactual Agent’s (Fig-

ure 9.8). This indicates that when the agent is allowed to choose its actions, it makes tailored, non-random

choices about the interventions it makes and the data it wants to observe – even in the service of a counter-
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factual objective.

9.7 Discussion and Future Work

Learning abstract structural information about theworld that generalizes across tasks is an important com-

ponent of natural intelligence underlying its flexibility and data-efficiency. In this chapter, I show that

causal reasoning capabilities can arise from such hierarchical structure learning (i.e. meta-learning) sim-

ply through interaction with an environment that rewards and permits causal reasoning. An important

prediction of our model is that different kinds and extents of causal reasoning can arise depending on ex-

isting structure in the environment. We find that when put in different environments, our agents learn

to: 1) leverage observational data to make causal inferences, 2) leverage interventions to perform causal in-

ference in the presence of unobserved confounders, 3) leverage instance-specific information to perform

counterfactual reasoning, and 4) perform active-learning, i.e. actively generate informative data when the

environment permits it.

Even in this simple domain, we saw evidence of unspecified, non-trivial underlying statistical structure

in the environment, as well as preliminary evidence that our agents utilize it via heuristics. Future work

could further examine the procedures being learned and the kinds of structure being utilized. In our anal-

yses, we compared to baselines and study behavior on diagnostic test-sets to characterize these. Other

workon statistical approaches to learning causal structure 24,221,217, aswell asmethods fromneuroscience472,

could provide further insights into what our agents learn, which could potentially be leveraged for more

efficient causal reasoning. By using an RL framework, our agents learn to take actions that produce useful

information—opening up possibilities for structured exploration, and optimal experiment design. In our

work, we don’t address the causal grounding problem—our agents are told what the relevant variables are.

Using models that are more explicitly structured e.g. 8,17,128, and more advanced architectures e.g. 208,207,105,

could allow us to scale up to directly inferring more systematic representations from unstructured input,

and perform a larger range of tasks. The unique advantages of our model-free, discriminative approach is

that it learns causal induction (inferring the causal structure, i.e. acquiring “potential knowledge” of the

domain) and causal inference (making predictions about causal events, i.e. converting potential knowledge
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to “realized knowledge”) end to end. Therefore the causal structure implicitly represented is influenced

by the downstream inferences. This is ecologically rational and could allow us to isolate relevant causal

variables in a domain, to then feed into a more structured approach to causal induction, thereby reducing

the computational costs of this search.

A crucial contribution of our work is to consider causal reasoning in natural intelligence not an end

in and of itself but a means to better performance on some downstream task that is easier to specify, in

a world that contains causal structure. In our case this task is acquiring reward in an RL task, but could

be generalized to any other task by simply changing the meta-learning objective. This is a reasonable as-

sumption since causal reasoning exists in humans, and even chimpanzees and rats 34,171,359 without “formal

instruction” on causality itself. This assumption allows us to frame the acquisition of causal reasoning as a

meta-learning problem, andwe highlight how this approach could also capturemany qualitative empirical

findings in how causal reasoning is learned and implemented in humans.

This direction of research opens up many interesting directions in cognitive science and psychology.

We focused primarily on varying the kinds of data available to the agent, but there many other ways in

which the agent’s experience will inform the kind and extent of causal reasoning exhibited. In this study,

we uniformly sample the space of CBNs and external interventions, but ecological distributions of causal

structures and queries are not uniformly distributed and vary significantly from domain to domain. Our

meta-learning framework adapts to such structure in the training distribution95,339,471 and could parallel

the domain/function specificity of human causal reasoning 254,283. Different distributions of queries can

also create situations where simpler associative strategies are largely indistinguishable from full causal rea-

soning452,155. For example, as in Experiment 1, when the intervened upon node has no parents, causal rea-

soning is equivalent to associative reasoning. Further, in most real-world tasks, causal inference is usually

not useful in and of itself, but rather for some downstream task. The reward in our study also depended

only indirectly on causal reasoning. While in our task, causal reasoning is still an optimal strategy, this

may not always be the case. These factors may result in different optimal strategies that vary on the spec-

trum of how “causally-aware” they are, and allow parallels to the graded notions of causal inference in

humans 112,114,365,366.
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10
Conclusion

In 1955, Herb Simon put forth the challenge facing more realistic theories of human intelligence:“Broadly

stated, the task is to replace the global rationality of economic man with a kind of rational behavior that is

compatible with the access to information and the computational capacities that are actually possessed by

organisms, includingman, in the kinds of environments in which such organisms exist.” This thesis hopes

to do exactly that. By taking into account the circumstances under which intelligent behavior manifests –

both the limitations on resources, structure in the environment, and how these two interact – I provide

new computational models of human probabilistic inference, that are psychologically plausible. Without

such plausible algorithmic solutions to rational or normative inference in structured Bayesianmodels, they

remainunsatisfying asmodels of humancognition. Wealso cannot leverage theirmanydesirable properties

in building intelligent machines. The ideas furthered in this thesis, of leveraging environmental structure

via flexible re-use of previous computations to simplify inference, bring Bayesian models of intelligent

behavior back into business.
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Further, these models parsimoniously explain a wide range of empirical findings about non-normative

inference. In particular, they explain howhumans can sometimes be so close to optimal, and at other times

(with the same cognitive resources), so biased – and biased in so many different context-sensitive ways.

These insights also lead to entirelynewways tounderstand and engineer artificial systems, viamanipulation

of the environments in which they learn and function. This confluence suggests links between the analysis

of ecological rationality in humans and in machines, leading to new lines of research into understanding

both.

Open Questions and Future Work

Model acquisition An important question not addressed directly in this thesis is of how structured

probabilistic models are acquired in the first place. In this thesis, we distinguish between ‘learning about

the world’ or ‘potential knowledge’, and ‘learning to think’ or ‘realized knowledge’. Most of the work

on human cognition presented here operates solely on the second, i.e. in the realm of internal processes

within the mind, after all external knowledge has already been gained and represented as a probabilistic

model. In some of the studies presented here, we verbally provide the data generating process, i.e. the

underlying structured probabilistic model (for example the urn experiments in Chapter 7), and in others,

we assume this is known frompre-experimental experience (for example in the scene statistics domain used

in Chapters 5 - 7). Howmight these structured Bayesianmodels be acquired via direct interaction with the

environment?

One way to look at model acquisition is as a higher level probabilistic inference. That is, the represen-

tation we acquire of how a domain works is by searching over some space of possible models (a prior over

models), assigning probabilities for howwell they explain the observed data (the likelihood of thatmodel),

and then choosing a model such that it has high posterior probability. This is of course, also a very chal-

lenging inference problem.402,46 In addition, how dowe knowwhat a good hypothesis space ofmodels is?

One suggestion is that these are not from some pre-existing hypothesis space but rather built from struc-

tured primitives. Several findings show that many primitives of structure might be innate and available

at birth before any interaction with the environment.431,60 However, this still leaves open the question of
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how we search over the large space of models that can be built from these primitives, to find the right one

for each domain. It also passes the buck further down to how we know what the right primitives are, and

how (potentially via evolution) such primitives came to be innately encoded.

Explicitly structured probabilistic models however have several desirable features – like efficient learn-

ing 237, greater generalizability 260, and an accurate representation of uncertainty 190. An important direc-

tion of future research therefore is to find ways to harness these advantages while avoiding the prohibitive

costs (and resulting implausibility) of learning thesemodels from scratch via search. One possibility is that

structure in the environment (and amortization procedures that reflect this structure) can alleviate these

inference costs – in the same way this thesis suggests that it could alleviate the intractability of inference

within a learned model.

Twokindsof learning Another interesting direction is to consider the interactionbetween learning

about the world, and learning to make inferences in it. Although we have so far treated these entirely

separately (at least in our studies of human cognition), in most real world domains, these are not separate

tasks. In fact, we almost never learnmodels directly, we learn them as an intermediary towards performing

some task that requires an inference within that model.

As an illustrative example, we consider a classic example from reinforcement learning, of latent learning

in Tolman’s rat mazes454. Here, rats learned to navigate mazes of very specific shapes, to get to a reward.

Simply memorizing the actions required to get to the reward in these mazes would have been sufficient

to always receive the reward. Tolman 454 found however that rats developed a more abstract model, or

‘cognitivemap’ of the spatial positionof the rewardwith respect to their startingpoint. This is evidencedby

the finding that the rats find the reward by navigating directly to it, in close to a straight line, when thewalls

of themaze are removed*. In this case, learning themodel is like learning the spatial position of the reward

with respect to you. This captures something about the underlying structure of the environment (spatial

in this case), and this knowledge can generalize to give reasonable performance in different situations –

like starting from a different initial points, differences in the structure of the maze, or obstacles in the

*The actual experiment did not remove the walls of the maze but replaced it with a maze that contained several
radial arms, and found that rats take close to the shortest path to the reward by choosing the right arm.
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way. Inference in this model corresponds to planning ones actions (within constraints like walls of mazes,

and wanting to minimize energy spent) in order to get to the reward. The task that the rats are trained

on only really requires the ability to make some very specific inferences. There is no explicit requirement

to represent any additional structure like the spatial structure of the environment. But we see that they

acquire such a representation nonetheless. In other words, they could learn a purely discriminativemodel

(for the purposes of the task they are trained on), but instead learn an at least partially generative model.

This allows it to generalize beyond the specific task it was trained for, and acquire the reward efficiently

when the walls of the maze are removed. This is characteristic of several domains – while abstract models

are usually useful for generalization, they are rarely explicitly taught or tested. Rather, they are acquired

as an implicit intermediary to a task that requires some specific inferences in such a model. In this thesis,

we assume that the model has already been learned, and the only remaining challenge is in the inference.

In the previous section we discuss how probabilistic inference can be used to learn the model. However,

jointly learning a structured model for the environment, and learning to perform efficient inferences in

this model, could bring with it own set of unique predictions and implications that future work should

explore.

Shaping our environments We have assumed that the interaction between the environment and

the intelligent systems that live and learn in it is one-directional, only considering the impact of the en-

vironment on the procedures learned by the agents that interact with it. However, intelligent agents fre-

quently influence their own environments. This two-way interaction is especially pertinent in domains

like language where the production mechanisms themselves are shaped and limited by human cognitive

abilities – our ability to learn and understand compositionally structured languages is learned using data

created by other humans’ ability to produce these compositionally structured languages. The role of shap-

ing one’s environment is also relevant in other domains that are not as directly produced by humans. As far

back 1956 in the study of category and concept learning, Bruner 50 presented a distinction between learn-

ing through passive reception of observations and through active selection of observations in support of

hypothesis testing. Much subsequent work has expanded upon the significant impact that active infor-

mation seeking behaviors have on learning 321,294,189, suggesting that even very young children can and do
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engage in behaviors that shape their own learning environments 381,170,315.

A ‘rational analysis’ approach to active learning posits that humansmaximize information gain, subject

to the costs of information gathering. However, similar to our quandaries about exact probabilistic infer-

ence in humans, exactly computing information gain is nearly intractable. Further, several studies often

find biases in people’s information seeking tendencies 226,21. Future work should consider how processes

like caching, re-use and amortization that can ease the computational burden of normative information

seeking, replicate the specific kinds of biases observed, and potentially lead to new rational process models

of active learning.

Grounding the theory A key aspect of this thesis is to more explicitly consider the role of memory

in human inference. Even within this framework of usingmemory as a computational resource, it is yet to

be understood what the contributions of different memory mechanisms (episodic, semantic, procedural,

etc.) might be. This thesis has been largely agnostic to the specific kinds of re-use and how they might be

realized in human memory systems. Future work can more explicitly investigate these different kinds of

re-use. In the same vein, biased judgments have been studied extensively, and several models for these have

been proposed. We have discussed some of these alternatives in this thesis, as well as how many of them

fit into the broader framework of ecological rationality via amortized inference. Future work can work

towards better understanding how thesemanymodels and differentmemorymechanisms fit together and

inform each other.

Another consideration is how such theories might be implemented in the brain. Future work should

look for signatures of amortization in the brain, and better understand which parts of the brain are in-

volved in the different kinds of learning discussed here. We have briefly discussed the neural plausibility

of approximation algorithms like Markov chain Monte Carlo, and variational inference in Chapter 3. A

main proposal of this thesis is a hybrid model that incorporates aspects of both algorithms. Future work

should consider how such hybrids might be realized in networks of neurons.

Closingthoughts Amortization as an approach to ecological rationality also hasmuch broader, and

further-reaching implications for cognitive science, beyond the topics studied in this thesis. A better under-
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standing of the underlying computational principles of ecological rationality can shed light on one of the

longest-standing debates on the basis of human cognition: the conflict between compositional structure

and simple statistics, in models of cognition.

Systematicity and compositionality 121 in structured representations permit the kinds of flexible general-

ization, far beyond direct experiences, that humans commonly exhibit. 181,408,484,401This flexibility however

comes at a cost. While systematic and compositional representations allow recombination of its compo-

nents in many different ways to provide solutions to new problems, inferring the solution to a particular

given problem – by inferring the right combination of components in this large space – is very expensive.

In otherwords, thesemodels are ‘generative’, having an explicit representationof the underlying generative

process that produced the observed data. However producing a response to a specific query – or making

an inference – based on this information, requires additional computation.

Statistical approaches 377,298 on the other hand, do not invoke an intermediate generative model. They

instead directly learn to provide responses to queries. Without access to an explicit generative model, we

lose the potential to generalize flexibly beyond direct experience. However, ‘making an inference’ is no

longer a challenge, since these approaches directly provide responses to queries. In other words, statistical

models are usually ‘discriminative’: theydonot separately represent theunderlyingdata generatingprocess,

and instead directly model the mapping between observations and response.

While structured generativemodels give very good generalization, inference in them is often intractable.

Statistical discriminative models on the other hand are poor at generalization but can make fast, often

heuristic, inferences. Each of these therefore have been evoked to model different aspects of human cogni-

tion across several fields including word semantics439,377,163, probabilistic judgment 331,458, concept learning

and categorization 50,301,408, and reinforcement learning 146,77,250.

A crucial observation however is that these two possibilities simply populate the far ends of a spectrum

in the trade-off between generalization and tractable inference. While intelligent systems do generalize

flexibly, they need not generalize indiscriminately. They should adapt to the environment to choose what

kinds of generalizations are important, and sacrifice other generalizations (in favor of statistical pattern

recognition, or memorization) in the interest keeping inference tractable. This allows for intermediate
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models that lie between the two extremes of entirely compositional generative representations, and entirely

statistical discriminative ones.

Where on this spectrum is ‘optimal’ for an environment or domain, will be determined by the ecolog-

ical distribution of queries we encounter in it. We do not represent the world in its full generality, rather

we represent the world conditioned on what we will have to do with that representation, which is usu-

ally so to respond to specific distributions of queries. This thesis provides a powerful new theory for how

such ecological rationality can come about via the amortization of previous computations. This provides a

mechanism for learning representations that could trade-off flexible generalization and tractable inference,

in a domain-sensitive way. These insights pave the way toward hybrid models that combine the comple-

mentary advantages of structured generative models and statistical discriminative models. Not only does

this have significant implications for our understanding of human cognition, these insights can also be

used to build better, and more human-like, artificial intelligence.
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A
Supplementary Materials

A.1 Two reuse schemes

The two schemes for reuse described in Figure 6.3, summary-based and sample-based amortization, are

described below in greater detail.

In sample-based amortization, we simply add samples generated in response to one query (Q1) to the

sample set for another query (Q2). So ifN1 sampleswere generated in response toQ1, andN2 new samples

are generated in response toQ2, in the absence of amortization, the responses to the two queriesQ1 and

Q2would be generated as follows:
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P(hQ1|d) ≈
1
N1

N1∑
n=1

I[hn = hQ1]

P(hQ2|d) ≈
1
N2

N2∑
n=1

I[hn = hQ2]

Under the sample-based amortization scheme, the response toQ2 is given by a calculation carried out

over allN1 + N2 equally weighted samples.

P(hQ1|d) ≈
1
N1

N1∑
n=1

I[hn = hQ1]

P(hQ2|d) ≈
1

N2 + N1

( N1∑
n=1

I[hn = hQ2] +
N2∑
n=1

I[hn = hQ2]

)

Under this scheme, all the computations carried out forQ1 are available for flexible reuse in the com-

putation forQ2.

In summary-based amortization, we reuse a summary statistic computed fromQ1. This strategy is only

applicable to problems where the answer toQ2 can be expressed as the composition of the answer toQ1,

and an additional simpler computation. For example if Q1 is “What is the probability that there is an

object starting with a C in the scene?”,Q2 could be “What is the probability that there is an object starting

with a C or an R in the scene?”. In this case, the N1 samples generated in response toQ1 are summarized

into one probability (“the probability of an object starting with C”), N2 new samples are generated in

response to a simpler query (“the probability of an object starting with R”), and these two numbers are

then composed (in this case simply added) to give the final estimate forQ2 (“the probability of an object

starting with C or R”).

249



P(hQ1|d) ≈
1
N1

N1∑
n=1

I[hn = hQ1]

P(hQ2|d) ≈
1
N1

N1∑
n=1

I[hn = hQ1] +
1
N2

N2∑
n=1

I[hn = (hQ2 − hQ1)]

Under this scheme, only the final product of the computation carried out forQ1 is reused in the calcu-

lations forQ2.

A.2 Recognition network architecture

We used a three-layer neural network architecture as the function approximator for the approximate pos-

terior. Each unit took as input a linear combination of all the units in the layer below, and then passed this

linear combination through a nonlinear transfer function. The details of this architecture varied depend-

ing on the structure of the inference problem.

When the hypothesis space was binary, the output of the network was a Bernoulli parameter; thus, the

network implemented a function fφ : D 7→ [0, 1], where D denotes the data space, and the variational

approximation was Qφ(h|d) = Bernoulli(h; fφ(d)). The data space was modeled by 5 input variables:

one for the prior parameter, two for the likelihood parameters, and two for the strength and weight of

the evidence, and the output space consisted of a single output that represented a Bernoulli parameter.

The hidden units use a radial basis function non-linearity, the mean and variance of which were also opti-

mized, and the activation function at the topmost layer was a softmax in order to ensure the final output

lay between 0 and 1. To vary the capacity of the network, we vary the number of hidden units; unless oth-

erwise mentioned, networks contain 1 hidden unit since that provides the strongest bottleneck and best

demonstrates the effects of interest. We use 2 hidden units only in the replication of the empirical evidence

reviewed in Benjamin 25 . Some of the experiments therein are more complex (larger andmore varied space

of priors, likelihoods and sample sizes) than the subsequent experiments we model, and we found that
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while a networkwith 1 hidden unit still captured the qualitative patterns of interest in the empirical results,

it could not capture some of the variation and therefore looked visually less similar to the empirical data.

We also use a variant of this function approximation architecture in the section on memory-modulated

subadditivity, where the number of inputs increases to 12, and the output is a multinomial distribution

of dimension 12. Learning a 12 dimensional multinomial is much harder than learning a binomial, so we

increase the number of hidden units to 10.

When thehypothesis spacewas real-valued, theoutputwas amean and log standarddeviationparametriz-

ing a Gaussian distribution; thus, the network implemented a function fφ : D 7→ R2, and the variational

approximation was Qφ(h|d) = N (h; fφ(d)). The data space was modeled by three inputs: the prior

mean, the mean of the evidence and the number of samples, the output space consisted of two outputs

that represented the mean and variance of a normal distribution. The hidden units used a hyperbolic tan-

gent activation function, and the activation function at the topmost layer made no transformation at the

node representing the mean, and took an exponential at the node representing the variance to ensure that

the final output was greater than zero.

A.3 Hierarchical Bayesian model in the continuous domain

Here we discuss the predictions of a hierarchical Bayesian model that learns about the underlying global

variances fromexperience. We refer to it henceforth as theL-HBM, for learnedhierarchical Bayesianmodel.

We find that it cannot reproduce the observed effect of differentially strong reactions to data between the

high and the low dispersion condition.

The L-HBM assumes the true generative model described in the section ‘Extension to a continuous

domain’. The output ykn for trial n in a block k is drawn fromN (mk, s). Thesemk values are distributed

over blocks asN (m0, v).

The true values of these parameters are as follows: s = 25,m0 = 40 for all participants. In the high

dispersion condition v = 144 and in the low dispersion condition v = 36. The HBM discussed in the

main text receives these correct values for the parameters. The L-HBMdiscussed here has to infer these val-

ues. The prior distributions we assume form0, s, and v in the L-HBMareN (40, 10), half-Cauchy(0, 10),
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and half-Cauchy(0, 10), respectively. It then receives the observations ykn and can form a joint posterior

distribution over m0, s, and v. With these it can then form a posterior predictive distribution for mk in

that block, which we use as the predicted output on each trial.

We compared the resulting updates of this L-HBM to the updates from theHBM in the main text that

knows the true parameters of the underlying generative distributions (see Fig. A.1). For both the high and

the low dispersion conditions, the updates closely follow the diagonal line of y = x. This indicates that

inferring m0, s, and v (in addition to mk) does not result in significant differences in the updates in an

ideal observer. Crucially, the L-HBM does not replicate the main qualitative effect of a significant differ-

ence in updates between the high and the low dispersion condition, for the same rational update. This

means that—unlike our Learned Inference Model—a hierarchical Bayesian model cannot reproduce the

qualitative effects observed in the experiment.
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Figure A.1: Performance of the L-HBM. Simulation results of a hierarchical Bayesian model that infers the underlying param-
eters in the the experiment reported by Gershman 137 . The Y-axis shows the L-HBM’s updates from prior to posterior (ΔData)
and the X-axis shows the update of a rational (hierarchical) model (ΔRational; a HBM that knows the true parameters for the
underlying generative process). Error bars represent the standard error of the mean. Gray line represents y = x.
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Figure A.2: (a): Directed acyclic graph. The node X3 is a collider on the path X1 → X3 ← X2 and a non-collider on the
path X2 → X3 → X4. (b): Cyclic graph obtained from (a) by adding a link from X4 to X1.

A.4 Causal Bayes Nets

By combining graph theory and probability theory, the causal Bayesian network framework provides us

with a graphical tool to formalize and test different levels of causal reasoning. This section introduces

the main definitions underlying this framework and explains how to visually test for statistical indepen-

dence 344,33,249,13,317.

A graph is a collection of nodes and links connecting pairs of nodes. The links may be directed or undi-

rected, giving rise to directed or undirected graphs respectively.

A path from node Xi to node Xj is a sequence of linked nodes starting at Xi and ending at Xj. A directed

path is a path whose links are directed and pointing from preceding towards following nodes in the se-

quence.

A directed acyclic graph is a directed graph with no directed paths starting and ending at the same node.

For example, the directed graph in Figure A.2(a) is acyclic. The addition of a link from X4 to X1 gives rise

to a cyclic graph (Figure A.2(b)).

A node Xi with a directed link to Xj is called parent of Xj. In this case, Xj is called child of Xi.

A node is a collider on a specified path if it has (at least) two parents on that path. Notice that a node can

be a collider on a path and a non-collider on another path. For example, in Figure A.2(a) X3 is a collider

on the path X1 → X3 ← X2 and a non-collider on the path X2 → X3 → X4.

A nodeXi is an ancestor of a nodeXj if there exists a directed path fromXi toXj. In this case,Xj is a descen-

dant of Xi.
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A graphical model is a graph in which nodes represent random variables and links express statistical rela-

tionships between the variables.

A Bayesian network is a directed acyclic graphical model in which each node Xi is associated with the con-

ditional distribution p(Xi|pa(Xi)), where pa(Xi) indicates the parents of Xi. The joint distribution of

all nodes in the graph, p(X1:N), is given by the product of all conditional distributions, i.e. p(X1:N) =∏N
i=1 p(Xi|pa(Xi)).

When equipped with causal semantic, namely when describing the process underlying the data gener-

ation, a Bayesian network expresses both causal and statistical relationships among random variables—in

such a case the network is called causal.

Assessing statistical independence in Bayesian networks. Given the sets of random vari-

ablesX ,Y andZ ,X andY are statistically independent givenZ if all paths from any element ofX to any

element ofY are closed (or blocked). A path is closed if at least one of the following conditions is satisfied:

(i) There is a non-collider on the path which belongs to the conditioning setZ .

(ii) There is a collider on the path such that neither the collider nor any of its descendants belong toZ .

A.5 Scaling up causal experiments

The purview of the experiments in the main text was to show a proof of concept on a simple tractable

system, demonstrating that causal induction and inference can be learned and implemented via a meta-

learned agent. In the following, we scale up our results to more complex systems in two new experiments.

A.5.1 Experiment 4: Non-linear Causal Graphs

In this experiment, we generalize some of our results to nonlinear, non-Gaussian causal graphs which are

more typical of real-world causal graphs and to demonstrate that our results holdwithout loss of generality

on such systems.
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0.0 2.0
Avg. Reward

(a) (b)

Active-Int.

Obs.

Long-Obs.

0.0 2.0
Avg. Reward

Random-Int.

Active-Int.

Optimal C-E

Figure A.3: Results for non-linear graphs. (a) Comparing average episode reward for agents trained with different data. (b)
Comparing information phase intervention policies.

Here we investigate causal Bayesian networks (CBNs) with a quadratic dependence on the parents by

changing the conditional distribution to p(Xi|pa(Xi)) = N ( 1Ni

∑
j wji(Xj+X2j ), σ). Here, although each

node is normally distributed given its parents, the joint distribution is notmultivariateGaussian due to the

non-linearity in how themeans are determined. We find that the Long-ObservationalAgent achievesmore

reward than theObservationalAgent indicating that the agent is in fact learning the statistical dependencies

between the nodes, within an episode. * We also find that theActive-Interventional Agent achieves reward

well above thebest agentwith access to only observational data (Long-Observational in this case) indicating

an ability to reason from interventions. We also see that the Active-Interventional Agent performs better

than the Random-Interventional Agent, indicating an ability to choose informative interventions.

A.5.2 Experiment 5: Larger Causal Graphs

0.0 1.0
Avg. Reward

Long-Obs.
Obs.

Active-Cond.
Active-Int.
Active-CF

(a) (b)

0.0 1.0
Avg. Reward

Random-Int.

Active-Int.

Optimal C-E

Figure A.4: Results for N = 6 graphs. (a) Comparing average episode reward for agents trained with different data. (b)
Comparing information phase intervention policies.

In this experiment we scaled up to larger graphs with N = 6 nodes, which afforded considerably more

unique CBNs than withN = 5 (1.4× 107 vs 5.9× 104). As shown in Figure A.4a, we find the same pat-

*The conditional distributionp(X1:N\j|Xj = 5), and thereforeConditionalAgents, were non-trivial to calculate
for the quadratic case, and was thus omitted.
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tern of behavior noted in themain textwhere the rewards earned are ordered such thatObservational agent

< Active-Conditional agent < Active-Interventional agent < Active-Counterfactual agent. We see addi-

tionally in Figure A.4b that the Active-Interventional agent performs significantly better than the baseline

Random-Interventional agent, indicating an ability to choose non-random, informative interventions.
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